Scaling up Planning Systems using Parallel Hardware and Machine
Learning

Diane J. Cook

University of Texas at Arlington
cook@centauri.uta.edu



Abstract

The objective of this project is to improve the applicability of artificial intelligence planning
systems to large-scale manufacturing tasks. We present two approaches to improving planning
systems: the first component develops parallel algorithms for improving the heuristic search
underlying all planning systems, and the second component uses machine learning methods to
improve the accuracy of generated plans. The success of this research can provide means for
manufacturing applications to make effective use of AI planning systems.

One application of artificial intelligence techniques that captivates researchers is the develop-
ment of automated planning techniques. A semi-automated or fully-automated agent can be used
to perform tasks that are too tedious, hazardous, or sometimes complex for humans. Although a
large variety of tasks can be assumed by automated mechanisms, several factors currently prevent
effective use of planning systems. The first problem is the time required to compute plans. Even
the problem of computing a plan to move a multi-jointed robot arm from one position to another
can be computation-intensive, yet manufacturing tasks add several degrees of complexity to this
problem. Second, the planning operators for a majority of manufacturing plans are supplied by
human errors and are thus prone to problems with incompleteness and inability to adapt to change.

We are currently researching methods of improving AI planning systems by developing parallel
search techniques to speed up the task and by using machine learning to automatically refine
operator definitions. Parallel processing can considerably reduce time spent in search, and thereby
speedup many Al techniques including planning. We parallelize IDA* search because this is an
admissible search algorithm that requires only linear memory. IDA* consists of a series of depth-
first searches, in which each pass through the space searches up to a specified cost limit. If a
solution is not found on one iteration, the cost limit is increased for the next iteration.

Our parallelization of IDA* uses a MIMD architecture and employs both parallel window search
(PWS) and distributed tree search (DTS). Using PWS, processors are given copies of the initial
state and search the space to different limits simultaneously. Processors stop their search if the
first discovered solution is acceptable, or wait for processors with lower thresholds to finish if an
optimal solution is desired. PWS reduces serial search time because redundant search is performed
in parallel, and PWS can find a close-to-optimal solution quickly because some processors will be
considering alternatives beyond the optimal depth.

Using DTS, one processor expands the search tree until there are enough distinct nodes to
distribute. Once a sufficient number of nodes have been expanded, the first processor passes a
unique node from the search queue to each remaining processor. Each processor is thus responsible
for the entire subtree rooted at the node it received. The processors perform IDA* on their unique
subtrees simultaneously. All processors search to the same threshold. After all processors have
finished a single iteration, they begin a new search pass through the same set of subtrees using a
larger threshold. DTS offers distinct benefits from PWS because no processor is searching useless



Cluster 1 @ Processor 1 Cluster 2 @ Processor 4
@ Frocessor 2 @ rrocessor 5
QO Processor 3 QO Processor 6

o

Figure 1: Space searched by two clusters, each with three processors

space beyond the optimal depth. On the other hand, if the tree is nonuniform, DTS will suffer
from an abundance of idle processors.

Our system combines PWS and DTS by forming clusters of processors. Each cluster is assigned
a unique cost limit (PWS), and work assigned to a single cluster is divided among the processors
within the cluster (DTS). Figure 1 illustrates the process for six processors divided into two clusters.
By varying the cluster size, the search can tend more toward parallel window search (#clusters =
#processors) or distributed tree search (#clusters = 1).

This hybrid search technique is further improved by adding operator ordering and load balanc-
ing. Operator ordering gathers information from one iteration through the space to determine how
to direct the search on the next iteration. Load balancing allows neighboring processors to share
work when any of the processors become idle. Preliminary results have been gathered in two search
domains using 64 processors on a nCUBE. These results indicate an average 34.6 speedup when
searching for optimal solutions. We are currently developing methods for determining the optimal
cluster size and integrating the parallel search into planning systems.

While parallel search can speed up planning systems, these systems are still sensitive to the
accuracy of the supplied operator definitions. We are currently making use of machine learning
techniques to learn and refine these definitions through experience. Typically, plans are generated
by searching through a series of operator descriptions to find a sequence of operators that leads
from the initial state of the problem to the goal state. Because operators are generated by humans,
they are often subject to human error. One example of a common error is a missing precondition.
A human expert may fail to note all the conditions which must truly exist for an operator to be
successfully applied. Another source of error results from the dynamic nature of planning problems.
Because planning domains change, tools change, processes change, and capabilities of agents change
over time, a static set of operator rules which generated successful plans at one time may generate
noisy plans later on.

Our approach uses machine learning techniques to automatically refine operator definitions.
We allow successful plans to act as positive examples of how the operator should be used, and
failed plans to act as negative examples of the operator application. From the example cases,
errors in the operator can be pinpointed such as missing or erroneous preconditions, and missing
or erroneous effects. Once this procedure is refined, it can be used to refine operator databases
and to automatically adapt operator descriptions to a changing environment. Induction learning
systems such as C4.5 can be further used to learn new features that best describe the environment
in which an operator can be successfully applied. We are currently applying these techniques to
the operator base employed by Texas Instruments for construction of rapid prototyping plans.

To date, few industrial applications of Al planning systems are in production. The limited use
is due both to the computational complexity of the planning task and the inability of the systems
to perform in the presence of incomplete or incorrect information. The improved performance
obtained by using parallel hardware and machine learning techniques can bridge the gap between
research and a wide variety of manufacturing applications.



