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Abstract

Artificial intelligence techniques often rely
on heuristic search through large spaces.
Because the computational effort required
to search these spaces limits the scalabil-
ity of the techniques, a number of parallel
and distributed approaches to search have
been introduced. However, theoretical and
experimental results have shown that the
effectiveness of parallel search algorithms
can vary greatly from one search problem
to another.

In this paper we investigate the use of
machine learning techniques to automati-
cally choose the parallel search techniques
that maximize the resulting speedup. The
approach described here is implemented
in the EUREKA system, an architecture
that includes diverse approaches to parallel
search. When a new search task is input
to the system, EUREKA gathers informa-
tion about the search space and automat-
ically selects the appropriate search strat-
egy. We compare the effectiveness of a deci-
sion tree learner and a Bayesian network to
model the influence of problem features on
speedup and select strategies that will yield
the best performance. We present pre-
liminary results on search problems drawn
from the Fifteen Puzzle domain.

1 Introduction

Because of the dependence AI techniques demon-
strate upon heuristic search algorithms, researchers
continually seek more efficient methods of search-
ing through the large spaces created by these algo-
rithms. Advances in parallel and distributed com-
puting offer potentially large increases in perfor-
mance to such compute-intensive tasks. In response,
a number of approaches to parallel AI have been
developed that make use of MIMD and SIMD hard-
ware to improve various aspects of search algorithms
[Kumar and Rao, 1990; Mahapatra and Dutt, 1995;
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Mahanti and Daniels, 1993; Powley and Korf, 1991].
While existing approaches to parallel search have
many contributions to offer, comparing these ap-
proaches and determining the best use of each con-
tribution is difficult because of the diverse search
algorithms, machines, and applications reported in
the literature.

In response to this problem, we have developed the
EUREKA parallel search engine that combines many
of these approaches to parallel heuristic search. Eu-
REKA is a parallel IDA* search architecture that
merges multiple approaches to task distribution,
load balancing, and tree ordering, and can be run on
a MIMD parallel processor, a distributed network of
workstations, or a single machine with multithread-
ing.

Our goal is to create a system that automatically
selects an optimal parallel search strategy for a given
problem space and hardware architecture. Unfor-
tunately, many pertinent features of the problem
space and architecture are unknown and can only
be estimated. In this paper, we compare the results
of using a decision tree and a belief network learn-
ing algorithm to automatically select parallel search
strategies based on features of the particular search
problem and hardware platform. Comparisons are
based on search problems selected from the Fifteen
Puzzle domain.

2 Related Work

Applying machine learning to customize and op-
timize software applications has generated interest
among researchers [Norvig and Cohn, 1997], and im-
plementations are starting to emerge. As an ex-
ample, Minton [Minton, 1996] uses learning algo-
rithms to automatically synthesize problem-specific
versions of constraint-satisfaction algorithms. Re-
search in other areas of computer science has yielded
similar ideas of customizable environments applied
to computer networks [Samrat Bhattacharjee and
Zegura, 1997; Steenkiste et al., 1997] and to interac-
tive human-computer interfaces [Frank et al., 1995;
Lieberman, 1998].



Some research has focused on run-time tuning of
software to performance of parallel systems. Much
of this work focuses on load balancing algorithms,
in which the current load of processors is periodi-
cally monitored in order to maintain an even work
load. For example, Zhou’s Centex algorithm col-
lects load information every UP time units to de-
termine when jobs should be migrated, and where
they should be placed [Zhou, 1988]. Xu and Hwang
[Xu and Hwang, 1993] not only collect run-time in-
formation to transfer tasks, but also modify the load
threshold and update time based on current perfor-
mance. However, even these researchers note that
the sensitivity of load balancing algorithms to the
parameter values suggests “that some form of adap-
tive load balancing may be able to provide good per-
formance when system load changes widely” [Zhou,
1988]. More recently, Taylor et al.’s Hamlet sys-
tem used learned rules to control thread creation
in general multithreaded software applications [Tay-
lor et al., 1998]. The work described here is unique
in allowing both problem-specific and architecture-
specific features to influence the choice of strategies
and in applying adaptive software techniques to par-
allel search.

3 Parallel Search Approaches

A number of researchers have explored methods
for improving the efficiency of search using parallel
hardware. We will review existing methods for task
distribution, for balancing work between processors,
and for changing the left-to-right order of the search
tree.

3.1 Task Distribution

A search algorithm implemented on a parallel sys-
tem requires a balanced division of work between
contributing processors to reduce idle time and min-
imize wasted effort. One method of dividing up the
work in IDA* search is with a parallel window search
(PWS), introduced by Powley and Korf [Powley and
Korf, 1991]. Using PWS, each processor is given
a copy of the entire search tree and a unique cost
threshold. The processors search the same tree to
different thresholds simultaneously. When an opti-
mal solution is desired, processors that find a goal
node must remain idle until all processors with lower
cost thresholds have completed their current itera-
tion.

One advantage of parallel window search is that
the redundant search inherent in IDA* is performed
concurrently instead of serially. A second advan-
tage of parallel window search is the improved time
in finding a non-optimal solution. Processors that
are searching beyond the optimal threshold may find
a solution down the first branch they explore, and
can return that solution long before other processors
finish their iteration. This may result in superlin-
ear speedup because the serial algorithm does not
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Figure 1: Space searched by two clusters, each with
3 processors

look beyond the current threshold. On the other
hand, parallel window search can face a decline in
efficiency when the number of processors is signifi-
cantly greater than the number of iterations required
to find a solution, in which case many processors are
performing wasted search beyond the optimal solu-
tion threshold (depth overshoot).

An alternative parallel search approach relies on
distributing the tree among the processors [Kumar
and Rao, 1990]. With this approach, the root node
of the search space is given to the first processor
and other processors are assigned subtrees of that
root node as they request work. As an alternative,
the distributed tree search algorithm (DTS) employs
breadth-first expansion until the host processor can
distribute unique subtrees to each processor. After
all processors have finished a single iteration, they
begin a new search pass through the same set of
subtrees using a larger threshold.

One advantage of this distribution scheme is that
no depth overshoot is present. It is possible, how-
ever, for DTS to perform wasted work at the goal
depth (horizontal overshoot). Another disadvantage
of this approach is the fact that processors are often
idle waiting for other processor to finish a current
iteration. The efficiency of this approach can be im-
proved by periodically balancing the load between
processors.

A compromise between these approaches is to di-



vide the set of processors into clusters [Cook and
Varnell, 1997]. Each cluster is given a unique cost
threshold, and the search space is divided between
processors within each cluster, as shown in Figure 1.

3.2 Load Balancing

When a problem is broken into disjoint subtasks the
workload will likely vary among processors. Because
one processor may run out of work before others,
load balancing is used to activate the idle processor.
The first phase of load balancing involves selecting
a processor from which to request work. One exam-
ple is the nearest neighbor approach [Mahapatra and
Dutt, 1995]. Alternative approaches include select-
ing random processors or allowing a master proces-
sor to keep track of the load in the other processors
and to send the ID of a heavily loaded processor to
one that is idle. During the second phase of load bal-
ancing, the requested processor decides which work,
if any, to give. The choice of load balancing tech-
nique depends on such factors as the amount of im-
balance in the size of the search subspaces, the num-
ber of processors, and the communication latency
between processors.

3.3 Tree Ordering

Problem solutions can exist anywhere in the search
space. Using IDA* search, the children are expanded
in a depth-first manner from left to right, bounded
in depth by the cost threshold. If the solution lies
on the right side of the tree, a far greater number of
nodes must be expanded than if the solution lies on
the left side of the tree. If information can be found
to re-order the operators in the tree from one search
iteration to the next, the performance of IDA* can
be greatly improved.

Powley and Korf suggest two methods of order-
ing the search space [Powley and Korf, 1991]. First,
children of each node can be ordered and expanded
by increasing heuristic distance to a goal node. Al-
ternatively, the search algorithm can expand the
tree a few levels and sort the frontier set (the set
of nodes at that level in the tree) by increasing h
value. Search begins each iteration from the frontier
set and this frontier set is updated each iteration.
In both of these cases, although the nodes may have
the same f value, nodes with smaller h values gener-
ally reflect a more accurate estimated distance and
are preferred.

Instead of ordering individual nodes, Cook and
Hall [Cook et al., 1993] order the set of operators to
guide the next IDA* iteration to the most promising
node. The most promising node is the node from
the cut-off set (a child node not expanded in the
previous iteration) with the smallest h value. As
an example, Figure 2 shows a search tree expanded
using one iteration of IDA*. The path to the most
promising leaf node (indicated with a star) is 1 3 3 2
0. The new operator ordering is computed using the
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Figure 2: Operator ordering example

order of operators as they appear in this path after
removing duplicates. Operators not appearing in the
path are added to the end of operator list, retaining
their original relative ordering. Thus the ordering of
operators for the example in Figure 2 changes from
0, 1, 2, 3 (always try operator 0 first, operator 1
next, operator 2 next, and operator 3 last) to 1, 3,
2, 0.

4 The EUREKA System

The EUREKA system merges together many of the
strategies discussed in the previous section. Param-
eters can be set that control the task distribution
strategy, the load balancing strategies, and the or-
dering techniques. In particular, the strategies that
can be selected include:

e Distribution strategy [Kumar and Rao, dis-
tributed tree search]

e Number of clusters [1..#tprocessors]

e Fraction of Open list to donate upon neighbor
request [0..1]

e Anticipatory load
[0. . .SizeOf_OpenList]

e Load balancing [Off, Neighbor, Random]
e Ordering [None, Local, Operator Ordering)]

balancing trigger

To automate the selection of parallel search strate-
gies, EUREKA can make use of gathered informa-
tion that describes the search space and the under-
lying hardware. To characterize the search space,



the system searches a sampling of the space (roughly
200,000 nodes, depending on average node expansion
time) and calculates the features listed below. The
initial sampling of the space only requires a few sec-
ond and does not significantly affect the total search
run time.

Branching Factor (b): The
factor of the search tree.

average branching

Heuristic Error (herror): The difference, on av-
erage, between the estimated distance to a goal
node and the true distance to the closest goal

node.

Heuristic Root Estimate (hroot): The es-
timated distance from the root to the nearest
goal node.

Imbalance (imb): The degree to which nodes are
unevenly distributed among subtrees in the
space.

Goal Location (loc): The left-to-right position of
the first discovered optimal solution node.

Heuristic Branching Factor (hbf): The ratio of
nodes expanded between the current and previ-
ous IDA* iterations.

In addition to problem space features, information
describing the hardware is also used including the
number of processors and average communication la-
tency. Initially, we used C4.5 [?] to induce a decision
tree from pre-classified training examples. Training
examples represent runs of sample problem spaces
with varying search strategies, and the correct “clas-
sification” of each training example represents the
search strategy yielding the greatest speedup.

For each new problem, EUREKA performs a shal-
low search through the space to collect features de-
scribing the new problem space and architecture. If
a goal is not found during the shallow search, the fea-
tures of the tree are calculated at this point and used
to index appropriate rules from the C4.5 database.
EUREKA then initiates a parallel search from the
root of the space, employing the selected strategies.

The selected features each demonstrate a signifi-
cant influence on the optimal search strategy. Al-
though feature values can change dramatically from
one problem to the next, each feature remains fairly
stable between levels of the same tree. As a result,
computing the values of these features at a low level
in the tree provides a good indication of the struc-
ture of the entire tree.

Two sources of uncertainty arise with this ap-
proach to the control of parallel search strategy se-
lection, and these factors can prevent traditional
machine learning techniques from performing well.
First, the search space features are not known a, pri-
ori. Instead, they are estimated given a small sample
of the overall search space. Similarly, communica-
tion latency is estimated based on average usage of

Stat Small | Medium | Large
Avg Coef Var | 1.32 8.82 9.95
Avg Speedup | 7.23 52.40 54.09

Table 1: Average Speedup Standard Deviation

the machine. These features may not accurately re-
flect the true nature of the problem or architecture.

The second problem is that while traditional ma-
chine learning systems require a deterministic clas-
sification of each training example, there does not
always exist a clear strategy winner for each training
case. On some problem instances one strategy dra-
matically outperforms the others. On other problem
instances two or more strategy selections perform al-
most equally well. This problem is exacerbated by
the fact that there is some noise inherent in the col-
lected run times. To demonstrate the amount of
error that can be present in the timings we select
twelve instances of the fifteen puzzle problem (four
small, four medium, and four large instances), and
time five runs of each instance with identical strategy
parameters on an nCUBE 2. We compute the stan-
dard deviation of the speedups for five runs of the
same problem instance, and then divide the result
by the sample mean to ensure the result is not af-
fected by the magnitude of the speedup values. This
coefficient of variation averaged over all problem in-
stances in the category is listed in Table 1 along with
the average speedup for the instances in the problem
category. As shown, the amount of error present in
the timings can be quite large, and when two strate-
gies perform almost equally well, the winner for any
given run can be almost arbitrary.

In response to this problem, a second C4.5 de-
cision tree was constructed and tested using only
a portion of the problem instances; namely, the 33
problem instances that exhibited the largest varia-
tion in run time between strategy choices (the cases
in which there was a clear “winner”). This approach
yields better performance but is not effective for all
problem instances.

Because these sources of uncertainty exist in this
application, in our second approach we choose to
model the problem with a belief network. In the
next section we describe the motivation behind this
choice and the particular model used for this work.

5 Belief Network Model of Parallel
Search

Belief networks [Pearl, 1988; Russell and Norvig,
1994] are directed acyclic graphs that compactly rep-
resent probabilistic dependencies among the vari-
ables of interest. They are well suited to reason
with features describing parallel search for two main
reasons. First, many features and factors describ-
ing parallel search are causally related. For exam-



ple, the search tree imbalance directly influences the
load distribution among the processors, and the hor-
izontal overshoot directly influences the search over-
head. These dependencies are represented in Fig-
ure 3 as directed links between the corresponding
nodes. Second, as mentioned, many of the features
are a priori unknown, and remain uncertain during
the task distribution process, but are nevertheless
stochastically determined by the values of other fea-
tures. For example, the average processor idle time
remains uncertain, but is related to the number of
processors, which is known, and to latency and load
distribution, which are uncertain.

EUREKA not only reasons about features, but also
makes decisions about which parallel search strategy
is expected to be the best, given the characteristics
of the search problem at hand. To facilitate this
decision-making we use an extension of Belief net-
works, called influence diagrams [Shachter, 1986].
Apart from nodes that represent uncertain variables
of the problem domain, called the chance nodes, in-
fluence diagrams also have decision nodes and a util-
ity node. The decision nodes represent the decisions
that a decision-maker can execute to influence the
domain. The utility node represents the preferences
of the decision-maker; it is used to assign a num-
ber (utility) to states of the domain that represents
the degree to which the decision-maker’s preferences
are satisfied by a given state of the domain. By
representing the way alternative decisions influence
the state of the domain, and the quantitative repre-
sentation of preference over the states, the influence
diagram can be used to arrive at optimal decisions.

In EUREKA, the decisions that can be executed are
the distribution strategy, number of clusters, frac-
tion of open list donated to neighbors, anticipatory
load trigger, type of load balancing, and the ordering
used, as we described above. These choices influence
the domain in various causal ways, interacting with
the known and uncertain features along the way, as
depicted in Figure 3. In this set of experiments we
discretized all numeric values into two ranges for one
experiment (NeticaBinary) and into more than two
ranges for the second experiment (NeticaMultiple).
For the parallel search problem, EUREKA’s utility
node in Figure 3 directly depends on a single node
of the domain — speedup.

Apart from the graphical representation, as in Fig-
ure 3, the parameters needed to fully specify the
network are numerical representations of the proba-
bilistic dependence relations. These are encoded as
conditional probability tables, or CPTs. For exam-
ple, a CPT for the node “load distribution” specifies
the probabilities of this node’s values for all possi-
ble values of its parent nodes, imbalance (labelled
“imb”) and “clusters”.

A feature of Belief networks is that the conditional
probabilities contained in the CPTs can be learned
from a sufficiently large number of training cases.

For the network we have created as well as for the
C4.5 algorithm, we used three-fold cross validation
to train the system on two-thirds of the data and test
the results on one-third of the data, averaging the re-
sults over three random partitions. Netica currently
only learns the conditional probability relationship
at each node — the structure of the network was hand
constructed. All of the training cases were obtained
from experimental runs of parallel search for the Fif-
teen Puzzle on an nCUBE machine, as we describe
below.

Thus, by using the influence diagram in Figure 3,
with CPTs learned based on a rich sample of test
runs, EUREKA can choose the selectable search pa-
rameters to have values that result in maximum ex-
pected speedup of the performed search. The results
of search speedups obtained in our experiments are
described below.

6 Experimental Results

We tested the ability of the influence diagram to
provide a basis of making parallel search strategy
decisions by comparing decisions based on predicted
speedup values from the influence diagram with de-
cisions based by the C4.5 learning system. In this
experiment, we used the Netica belief network sys-
tem to model the network and learn the CPTs. For
our preliminary results, we have modeled all nodes
in the diagram as chance nodes, but we will refine
this model in later experiments.

To create test cases, we ran each problem instance
multiple times on 32 processors of an nCUBE, once
using each parallel search strategy in isolation. The
measured features of the search space, the under-
lying architecture, and the resulting speedup are
stored in a file and fed as input to the belief net-
work. The belief network learns conditional prob-
ability tables reflective of the data in the training
set.

In this paper we show the results of automatically
selecting one parallel search parameter, the num-
ber of clusters. We compared the results of Netica-
selected strategies on test data to C4.5-selected
strategies and to each strategy used exclusively for
100 Fifteen Puzzle problem instances. Continuous-
valued variables were discretized into fixed-width
ranges before input to Netica. In one experiment
two values for each continuous variable were allowed,
and in another experiment multiple values were cre-
ated, the number depending on the variance of val-
ues observed for the variable. Speedup results for
various strategy decisions averaged over all problem
instances are shown in Table 2 below.

From the results of this experiment, the belief net-
work did outperform all of the fixed strategies as well
as C4.5 using all 100 problem instances. C4.5Fil
yielded the best results, but was only trained and
tested on cases with clear winners. As the numbers
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Figure 3: A model of the factors that influence speedup of parallel search algorithms.

Approach Speedup
1 Cluster 55.30
2 Clusters 60.98
4 Clusters 58.79
C4.5 57.14
C4.5Fil 86.76
NeticaBinary 64.93
NeticaMultiple 68.66

Table 2: Clustering Speedup Results

indicate, superlinear speedup was often achieved.
This occurs primarily when a goal node is found on
the right side of the tree. The serial algorithm em-
ploying IDA* search would exhaustively search the
left subtree before examining any nodes in the right
subtrees, but processors in the parallel algorithm
may start the search in the right subtrees. Because
search is finished as soon as a goal node is found,
the parallel algorithm does not perfectly mimic the
serial algorithm and thus often yields greater than
linear speedup. All of the machine learning ap-
proaches could benefit from additional training ex-
amples, as this problem represents a very large hy-
pothesis space.

7 Conclusions and Future Work

This project reports on work performed to combine
the benefits of parallel search approaches in the Eu-
REKA system. Experimentation reveals that strate-
gies developed over the last few years offer distinct
benefits to improving the performance of AI applica-
tions, and strategies need to be chosen based on the
characteristics of a particular problem. Results indi-
cate that machine learning techniques can be used to
perform automatic selection of parallel search strate-
gies. Because uncertainty exists in the character-
ization of a search problem, the underlying archi-
tecture, and the classification of training examples,
a mechanism such as a belief network may also be
useful in making optimal decisions.

The results shown in this paper are preliminary.
We are continuing to investigate methods of refin-
ing the decisions make by EUREKA. In addition,
the EUREKA system will benefit from incorporation
of additional search strategies, problem domain test
cases and architectures. We hope to demonstrate
that uncertainty reasoning techniques can be used
to effectively control strategy selection in parallel
search techniques and in many other areas of Al
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