Slides for Chapter 1
Characterization of Distributed Systems

From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems: Concepts and Design
Edition 5, © Addison-Wesley 2012

Note: not lecturing on all of Chapter 1, but you must read it
Selected application domains and associated networked applications

<table>
<thead>
<tr>
<th>Domain</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance and commerce</td>
<td>eCommerce e.g. Amazon and eBay, PayPal, online banking and trading</td>
</tr>
<tr>
<td>The information society</td>
<td>Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace.</td>
</tr>
<tr>
<td>Creative industries and entertainment</td>
<td>online gaming, music and film in the home, user-generated content, e.g. YouTube, Flickr</td>
</tr>
<tr>
<td>Healthcare</td>
<td>health informatics, online patient records, monitoring patients</td>
</tr>
<tr>
<td>Education</td>
<td>e-learning, virtual learning environments; distance learning</td>
</tr>
<tr>
<td>Transport and logistics</td>
<td>GPS in route finding systems, map services: Google Maps, Google Earth</td>
</tr>
<tr>
<td>Science</td>
<td>The Grid as an enabling technology for collaboration between scientists</td>
</tr>
<tr>
<td>Environmental management</td>
<td>sensor technology to monitor earthquakes, floods or tsunamis</td>
</tr>
</tbody>
</table>
Figure 1.2
An example financial trading system

- FIX Gateway
- FIX Adapter
- Complex Event Processing Engine
- Reuters Adapter
- Reuters Gateway

Trading strategies

FIX events

Reuters events
Figure 1.3
A typical portion of the Internet
1.3 Mobile and Ubiquitous Computing

Mobile Computing: a computer that can move around with you.
- Laptops
- Tablets
- Wearable devices: watches, clothes (??)
- Smart phones

Sometimes are **Location Aware**: can seamlessly access local printers or other resources

Context Awareness: a more logical/abstract mapping onto location awareness
Ubiquitous Computing: harnessing many small, cheap computational devices present in users’ physical environments.

Q: hot term for this lately?

• No UI: it blends into the environment
• Text (2011) is a bit dated on this area: “it may be convenient for users to control their washing machine or their entertainment system from their phone or a ‘universal remote control’ device in the home. Equally, the washing machine could notify the user via smart badge or phone when the washing is done. (emphasis mine)
Spontaneous interoperation: associations between devices are routinely created and destroyed

- Need to support this for location/context-aware ubiquitous computing
- Service discovery: associating a device with suitable local services.

Note: mobile and ubiquitous have some overlap.
Figure 1.4
Portable and handheld devices in a distributed system
Figure 1.5
Cloud computing
Figure 1.6
Growth of the Internet (computers and web servers)

<table>
<thead>
<tr>
<th>Date</th>
<th>Computers</th>
<th>Web servers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993, July</td>
<td>1,776,000</td>
<td>130</td>
<td>0.008</td>
</tr>
<tr>
<td>1995, July</td>
<td>6,642,000</td>
<td>23,500</td>
<td>0.4</td>
</tr>
<tr>
<td>1997, July</td>
<td>19,540,000</td>
<td>1,203,096</td>
<td>6</td>
</tr>
<tr>
<td>1999, July</td>
<td>56,218,000</td>
<td>6,598,697</td>
<td>12</td>
</tr>
<tr>
<td>2001, July</td>
<td>125,888,197</td>
<td>31,299,592</td>
<td>25</td>
</tr>
<tr>
<td>2003, July</td>
<td>~200,000,000</td>
<td>42,298,371</td>
<td>21</td>
</tr>
<tr>
<td>2005, July</td>
<td>353,284,187</td>
<td>67,571,581</td>
<td>19</td>
</tr>
</tbody>
</table>
1.5.1 Heterogeneity

Heterogeneity (variety/difference) in DSs
- Network technology
- CPU architecture / computer hardware
- Operating systems
- Programming languages
- Implementations by different developers

Q: what is the antonym for heterogeneity?

Middleware helps us with the above heterogeneties
Section 1.5.7
Transparencies

Access transparency: enables local and remote resources to be accessed using identical operations.

Location transparency: enables resources to be accessed without knowledge of their physical or network location (for example, which building or IP address).

Concurrency transparency: enables several processes to operate concurrently using shared resources without interference between them.

Replication transparency: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers.

Failure transparency: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.

Mobility transparency: allows the movement of resources and clients within a system without affecting the operation of users or programs.

Performance transparency: allows the system to be reconfigured to improve performance as loads vary.

Scaling transparency: allows the system and applications to expand in scale without change to the system structure or the application algorithms.
1.5.8 Quality of Service

Quality of Service (QoS): the “non-functional” properties (beyond the API)

- Reliability
- Security
- Performance
- Adaptability

Text: “In fact, the abbreviation QoS has effectively been commandeered to refer to the ability of systems to meet such deadlines.”

You will get some modest exposure to QoS in your programming assignments
Figure 1.7
Web servers and web browsers

Internet

Web servers
- www.google.com
- www.cdk5.net
- www.w3c.org

Browsers
- http://www.google.com/search?q=obama
- http://www.cdk5.net/
- http://www.w3.org/standards/faq.html#conformance

File system of www.w3c.org