Slides for Chapter 14: Time and Global States

From Coulouris, Dollimore, Kindberg and Blair

Distributed Systems: Concepts and Design

Edition 5, © Addison-Wesley 2012
Introduction [14.1]

• We need to reason about time of events
• No perfect global clock
• Lots of work on clock synchronization, we are skipping (14.3)
Clocks, events, and process states [14.2]

• Refine the model in Chapter 2 process interactions

• Consider DS a set P of N processes, p_i for $i=1, \ldots, N$

• Process p_i has a state s_i that (usually) changes over time

• Process p_i takes a series of actions, from 3 choices
 • Message send
 • Message receive
 • Operation to transform its state

• **Event** \(\equiv\) occurrence of a single action that a process carries out as it executes
 • Totally ordered (locally) on a given host,

• **History** \((p_i) \equiv h_i \equiv <e_i^0, e_i^1, e_i^2, \ldots>\) \#series of events

• Note: skipping rest of 14.2 … on clocks etc and also 14.3
Logical time and logical clocks [14.4]

• (Going to teach through the VR01 slide set for most of this, then go through the examples here to reinforce)
• Also for vector clocks separate example slides
Figure 14.5
Events occurring at three processes
Figure 14.6
Lamport timestamps for the events shown in Figure 14.5
Vector clocks

• Limitation of Lamport clocks: if \(L(e) < L(e') \) we can’t conclude that \(e \rightarrow e' \)
• Solution: make the LC scalar a vector
• \(V_i[i] \equiv \) number of events that \(p_i \) has timestamped
• \(V_i[j] \) (for \(i \neq j \)) \(\equiv \) #events at \(p_j \) that may have affected \(p_i \) and that \(p_i \) knows about.
• (Now see slides from the Birman book)
Figure 14.7
Vector timestamps for the events shown in Figure 14.5
Global states [14.5]

• (See the VR01 slides for best intro to this)
Figure 14.9

Cuts

- **Cut** of a system subset of its global history: union of prefixes of process histories
 - **Frontier** of cut: last event in each process’s prefix
- **Cut C consistent** if, for every event it contains, all events that “happened before” that event are also contained
 - i.e., for all events e in C, f → e → f is in C
Consistent cuts

• Recall system goes through $S_0 \rightarrow S_1 \rightarrow S_2 \ldots$
 • One different event at one process in $S_i \rightarrow S_{i+1}$
 • Global state then union of process states after a cut

• **Run**: a total ordering of all events in a global history that’s consistent with each local history’s ordering
 • Not all runs pass through consistent global states

• **Linearization** (AKA **consistent run**): ordering of events in global history consistent with happened-before relationship on the history
 • All linearizations pass only through consistent global states

• **Reachability**: state $S’$ is **reachable** from state S if there is a linearization that passes through S and then $S’$.
Global state predicates, stability, safety, and liveness [14.5.2]

• Evaluate a **global state predicate** to detect deadlock, etc
 • Function mapping from global states to \{True, False\}
 • **Stable property**: once predicate true, stays true (opp.: **transitory**)
 • I.e., true from all states reachable from the present state
 • **Safety property** (e.g., \(\alpha\)): nothing “bad” ever happens
 • E.g., never have deadlock
 • I.e., for all states **reachable from initial state**, \(\alpha\) is False (never True)
 • **Liveness property** (e.g., \(\beta\)): something good eventually happens
 • E.g., distributed algorithm eventually terminates
 • I.e., **Liveness w.r.t. \(\beta\)**: for any linearization \(L\) starting in state \(S_0\), \(\beta\) evaluates to True for some state \(S_L\) **reachable** from \(S_0\).
Snapshot algorithm

By Chandy and Lamport [1985]: determine global states

Goal: record a set of process AND channel states such that it is consistent (not strongly consistent) for a set of processes \(p_i \) \((i=1, 2, \ldots N) \)

Assumptions

- Neither channels nor processes fail
- Channels are uni-directional and FIFO ordered
- Graph of processes and channels strongly connected (path between any 2 processes)
- Any process may initiate the snapshot at any time
- Processes don’t need to freeze/lock: continue normal operations
Snapshot algorithm (cont.)

• Main ideas
 • Terms: incoming channels and outgoing channels for p_i
 • Each process records its state, and for each incoming channel, set of messages sent to it
 • For each channel, process records channel state: messages that arrived after its last recorded state and before sender recorded state
 • I.e., Record state at different times but account for messages transmitted but not yet received (these are part of the channel state)
 • Use distinguished marker messages
 • Tell receiver to save state
 • Way to determine which messages go in channel state
 • To initiate the algorithm, process acts like it received a marker message
Figure 14.10
Chandy and Lamport’s ‘snapshot’ algorithm

Marker receiving rule for process p_i
On p_i’s receipt of a marker message over channel c:
 if (p_i has not yet recorded its state) it
 records its process state now;
 records the state of c as the empty set;
 turns on recording of messages arriving over other incoming channels;
 else
 p_i records the state of c as the set of messages it has received over c
 since it saved its state.
end if

Marker sending rule for process p_i
After p_i has recorded its state, for each outgoing channel c:
 p_i sends one marker message over c
(because it sends any other message over c).
Example of snapshot algorithm

• Two processes, trade in widgets, over two unidirectional channels

• Process p1 sends orders for widgets to p2 with its payment ($10/widget)

• Process p2 sends widget along other channel
Figure 14.11
Two processes and their initial states
Figure 14.12
The execution of the processes in Figure 14.11

1. Global state S_0
 - p_1: <$1000, 0$>
 - p_2: <$50, 2000$>

2. Global state S_1
 - p_1: <$900, 0$>
 - c_2: (Order 10, 100), M
 - p_2: <$50, 2000$>

3. Global state S_2
 - p_1: <$900, 0$>
 - c_2: (Order 10, 100), M
 - c_1: (five widgets)
 - p_2: <$50, 195$>

4. Global state S_3
 - p_1: <$900, 5$>
 - c_2: (Order 10, 100)
 - c_1: (empty)
 - p_2: <$50, 195$>

(M = marker message)

Note: (1) S_0 is when p_1 sends marker (3) p_1 had previously ordered five widgets; sent before M received by p_2 (5) After above, final recorded state includes five widgets in c_1, yet system did not go through this state (6) Text explains how cut is consistent
Distributed debugging [14.6]

• Problem: recording system’s global state to make useful statements about whether a transitory state occurred in an actual execution
 • Capture trace info and do post hoc analysis
• Chandy and Lamport’s [1985] snapshot algorithm earlier used to collect states
 • Send to monitor process (considered outside the system)
 • Algorithm by Marzullo and Neiger [1991]
Distributed debugging (cont.)

• Goal: determine cases where global state predicate \(\phi \)
 • Was **definitely** *True* at some point in the execution
 • Was **possibly** *True* at some point in the execution

• “Definitely” applies to actual execution, not run extrapolated from it
 • Basically, we want to know if a **transitory state** actually occurred in an actual execution
 • Why not worry if a **stable state** did?

• Can consider all linearizations \(H \) of the observed events

 • **Possibly** \(\phi \): exists a consistent global state \(S \) through which a linearization of \(H \) passes such that \(\phi(S) \) is True

 • **Definitely** \(\phi \): for all linearizations \(L \) of \(H \), exists a consistent global state \(S \) through which \(L \) passes such that \(\phi(S) \) is True
Collecting the state [14.6.1]

- Procs p_i send in initial state, then periodically later ones
 - Does not interfere with execution, only delays a bit (!!)
 - Only need to send updates when change in variable used in ϕ
 - Monitor proc records state msgs from each p_i in queue Q_i
Figure 14.14 Vector timestamps and variable values for the execution of Figure 14.9

Example: safety property $|x_i - x_j| \leq \delta$ for all i, j in $[1,N]$
E.g. $\delta = 50$ & send only “large adjustments” next slides..
Inconsistent cut C_1 show violation that never happened... but C_2 did
Observing consistent global states [14.6.2]

• Recall a cut C **consistent** if, for every event it contains, all events that “happened before” that event are also contained
 • i.e., ∀ events $e \in C$, $f \rightarrow e$ implies that $f \in C$
• Fig 14.14 & only send when adjustments “large enough”
 • Upon receipt, process updates its value to that of sender
• To know if cut is consistent, processes also send vector clocks with (changed) state
Observing consistent global states (cont.)

• Let
 • \(S = \{s_1, s_2, \ldots, s_N \} \) be a global state at monitor, from the state msgs
 • \(V(s_i) \) vector timestamp of state \(s_i \) received from process \(p_i \)
• Then \(S \) is a consistent global state iff
 \[V(s_i)[i] \geq V(s_j)[i] \text{ for } i, j \in [1,N] \]
 • I.e., \# of \(p_i \)'s events known at \(p_j \) when it sent \(s_j \) is no more than then number of events that had occurred at \(p_i \) when it sent \(s_i \).
 • I.e., if one proc's state depends on another (by happened-to), then global state also encompasses state upon which it depends
• How to represent? Lattices (2 slides away)
• Condition depicted next…
• Consistent cut iff $V(s_i)[i] \geq V(s_j)[i]$ for i,j in $[1,N]$
 • I.e., # of p_i’s events known at p_j when it sent s_j is no more than then
 number of events that had occurred at p_i when it sent s_i.
 • I.e., if one proc’s state depends on another (by happened-to), then
 global state also encompasses state upon which it depends
Figure 14.15
The lattice of global states for the execution of Figure 14.14

Lattice: a partially ordered set represented graphically (loose defn)

- Captures reachability between consistent global states
- A linearizations traverses from top to bottom, one level down only.
- Eg. Above is all consistent global states in the history

S_{ij} = global state after i events at process 1 and j events at process 2
Figure 14.15 Redux
The lattice of global states for the execution of Figure 14.14

S_{ij} = \text{global state after } i \text{ events at process 1 and } j \text{ events at process 2}
Evaluating with the lattice

• Lattice shows us all linearizations corresponding to a history

• Evaluating possibly ϕ
 • Start at initial stage & step through all consistent states
 • Evaluate ϕ at each stage, stop when it evaluates to True

• Evaluating definitely ϕ
 • Try to find a set of states through which all linearizations must pass
 • Then check if the set’s states all evaluate ϕ to True; done if find
 • E.g., $\phi(S_{30})$ and $\phi(S_{21})$ both true, and one or other must be passed through for all executions
Figure 14.16: Algorithms to eval. possibly ϕ and definitely ϕ

NOTE: infinite depth

1. Evaluating possibly ϕ for global history H of N processes

$L := 0$;
$States := \{ (s_1^0, s_2^0, \ldots, s_N^0) \}$;

while ($\phi(S) = False$ for all $S \in States$)

$L := L + 1$;
$Reachable := \{ S' : S' \text{ reachable in } H \text{ from some } S \in States \land level(S') = L \}$;
$States := Reachable$

output "possibly ϕ";

S’ set where one event diff. from S
Reachable iff $V(s_j)[j] \geq V(s'_i)[j]$ for $i \neq j$ in $[1, N]$

Can find all states: traverse state queue messages Q_{i1}

2. Evaluating definitely ϕ for global history H of N processes

$L := 0$;
if ($\phi(s_1^0, s_2^0, \ldots, s_N^0)$) then $States := \{ \}$ else $States := \{ (s_1^0, s_2^0, \ldots, s_N^0) \}$;

while ($States \neq \{ \}$)

$L := L + 1$;
$Reachable := \{ S' : S' \text{ reachable in } H \text{ from some } S \in States \land level(S') = L \}$;
$States := \{ S \in Reachable : \phi(S) = False \}$

end while

output "definitely ϕ";
Figure 14.17
Evaluating *definitely* ϕ

Only traverse states eval F
E.g., Level 3 only one (bold lines)
E.g., Level 4 only one, right one not reachable from F
If $\phi(\,?)$ is True then definitely ϕ holds

$F = (\phi(S) = \text{False}); \quad T = (\phi(S) = \text{True})$