Blackout 101

Dr. B. Don Russell
Texas A&M University

Dr. Bruce Wollenberg
University of Minnesota

Mr. John McDonald
KEMA, Inc.

Dr. Pete Sauer
University of Illinois at Urbana-Champaign
An Electric Power System Tutorial - Part 2

Monitoring and Control of Power Systems

John McDonald

Sponsored by IEEE PES and IEEE-USA

Friday, February 6, 2004
Overview

- What is a SCADA System?
- How are SCADA Systems Used?
- What is a Substation Integration and Automation System?
- What are the Different Sources of Information?
- SCADA Alarm Processing / Filtering Capabilities
- System Factory and Site Testing
- Power System Action Time Frames
What is a SCADA System?

- Supervisory Control and Data Acquisition (SCADA)
 - Supervisory Control => Remote Control of Field Devices
 - Data Acquisition => Monitoring of Field Conditions
- SCADA System Components
 - Master Station => System “Nerve Center” Located in Electric Utility Energy Control Center (ECC); Dispatchers Use to Monitor and Control Power System
 - Field Devices => Needed Wherever There is Data to be Sent to Master Station (Substations, Lines or Feeders)
 - Communications => Links Master Station with Field Devices; Continuous 24 by 7 Operation
Electric Utility Energy Control Center (ECC)
SCADA System
Master Station – Computer Servers and Communication Equipment
SCADA System Master Station – Dispatcher Console Equipment
One-Line (Single-Line) Diagram
Alarm Summary Display

Alarm Summary

<table>
<thead>
<tr>
<th>No.</th>
<th>Date/Time</th>
<th>Origin</th>
<th>Description</th>
<th>Event</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>07/23/02 13:44:08</td>
<td>HORSELAKE 138K HSL 138KV BRIST-ROCK L. MW</td>
<td>RETURN HIGH LIMIT 3</td>
<td>387.8</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>07/23/02 13:44:07</td>
<td>MUSKOGEE 345KV MUSK 345KV UNIT 6 MW MW</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>975.3</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>07/23/02 13:44:07</td>
<td>MUSKOGEE 345KV MU 345 PITTSBURG LINE MW MW</td>
<td>RETURN HIGH LIMIT 1</td>
<td>953.9</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>07/23/02 13:44:07</td>
<td>MUSKOGEE 345KV MU 345 90% AD REF 1842 MW</td>
<td>RETURNED TO NORMAL</td>
<td>1801.7</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>07/23/02 13:44:07</td>
<td>HORSELAKE 138K HSL 138KV RENO LINE Watt MW</td>
<td>RETURN HIGH LIMIT 3</td>
<td>529.9</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>07/23/02 13:44:07</td>
<td>MTR SHOP DNP DNP 3 TEST POINT 13 MVAR</td>
<td>RETURN HIGH LIMIT 1</td>
<td>159.0</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>07/23/02 13:44:06</td>
<td>MUSTANG 138KV MUST 138 90% AD REF 1842 MW</td>
<td>LOW REASONABILITY EXCEEDED</td>
<td>1789.4</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>07/23/02 13:44:06</td>
<td>MTR SHOP DNP DNP 3 TEST POINT 6 MVAR</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>165.8</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>07/23/02 13:44:06</td>
<td>MTR SHOP DNP DNP 3 TEST POINT 1 B Volts V</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>165.8</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>07/23/02 13:44:04</td>
<td>MUSKOGEE 345KV MUSK 345KV UNIT 6 MW MW</td>
<td>HIGH LIMIT 1 EXCEEDED</td>
<td>993.7</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>07/23/02 13:44:04</td>
<td>MUSKOGEE 345KV CLARK345KV LINE A PH AMP</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>1554.3</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>07/23/02 13:44:04</td>
<td>MUSKOGEE 345KV MU 345 FT SMITH LINE MW MW</td>
<td>HIGH LIMIT 3 EXCEEDED</td>
<td>738.3</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>07/23/02 13:44:04</td>
<td>MUSKOGEE 345KV MU 345K RIVERSIDE LINE MW</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>1398.9</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>07/23/02 13:44:03</td>
<td>SEMINOLE SEN 345KV DRAPER LK L #3 MW</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>1746.4</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>07/23/02 13:44:03</td>
<td>HORSELAKE 65KV HSL 69 90% AD REF 1842 MW</td>
<td>LOW REASONABILITY EXCEEDED</td>
<td>1739.7</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>07/23/02 13:44:03</td>
<td>HORSELAKE 138K HSL 138KV RENO-10TH ST L MW</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>408.7</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>07/23/02 13:44:02</td>
<td>MUSKOGEE 345KV MUSK 345KV UNIT 4 MVAR MVAR</td>
<td>HIGH REASONABILITY EXCEEDED</td>
<td>753.3</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>07/23/02 13:44:02</td>
<td>HORSELAKE 65KV HSL 69 90% AD REF 1842 MW</td>
<td>RETURNED TO NORMAL</td>
<td>1806.1</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>07/23/02 13:44:02</td>
<td>MTR SHOP DNP DNP 3 TEST POINT 8 MVAR</td>
<td>RETURNED TO NORMAL</td>
<td>138.9</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>07/23/02 13:44:02</td>
<td>MTR SHOP DNP DNP 3 TEST POINT 6 MVAR</td>
<td>HIGH LIMIT 1 EXCEEDED</td>
<td>143.9</td>
<td></td>
</tr>
</tbody>
</table>
World Coordinate Display Schematic Diagram
Electric Utility Substation
Remote Terminal Unit (RTU)
How are SCADA Systems Used?

Supervisory Control and Data Acquisition

SCADA

SCADA/Automatic Generation Control

Energy Management System

Distribution Automation System

DA

Distribution Management System

DMS

EMS
SCADA System
Primary Functions

- Data Acquisition
- Remote Control
- User Interface
- Areas of Responsibility
- Historical Data Analysis
- Report Writer
SCADA / AGC System
Primary Functions

- Automatic Generation Control (AGC)
- Economic Dispatch (ED) / Hydro Allocator
- Interchange Transaction Scheduling
Energy Management System (EMS) Primary Functions

- Network Configuration / Topology Processor
- State Estimation
- Contingency Analysis
- Three Phase Balanced Operator Power Flow
- Optimal Power Flow
- Dispatcher Training Simulator
Distribution Automation (DA) System Primary Functions

- Voltage Reduction
- Load Management
- Power Factor Control
- Two-Way Distribution Communications
- Short-Term Load Forecasting
- Fault Identification / Fault Isolation / Service Restoration
- Interface to Intelligent Electronic Devices (IEDs)
Distribution Management System (DMS) Primary Functions

- Three Phase Unbalanced Operator Power Flow
- Map Series Graphics
- Interface to Automated Mapping / Facilities Management (AM/FM) or Geographic Information System (GIS)
- Interface To Customer Information System (CIS)
- Interface to Outage Management
Intelligent Electronic Device (IED) – the Building Block of Substation Integration and Automation

- Any device incorporating one or more processors with the capability to receive or send data/control from or to an external source (e.g., electronic multifunction meters, digital relays, controllers)
What is a Substation Integration and Automation System?

- Utility Enterprise
- Substation Automation Applications
- IED Integration
- IED Implementation
- Power System Equipment (Transformers, Breakers)
Substation Integration and Automation Systems
What are the Different Sources of Information?

Web Pages with:
- Real-time values
- Relay settings
- Fault records
- Fault records, summaries and waveform data from relays (and settings)

Real-time SCADA data and controls (any IED’s data)
SCADA Alarm Processing / Filtering Capabilities

- Knowledge-Based Alarm Suppression
 - Direct Linkages (can use pseudo status points)
 - Indirect Linkages
- Area of Responsibility
 - Use for each alarm window and each printer
 - Use to route alarms to proper windows/dispatchers and/or printers
Priority

- Each point has a priority level
- Every alarm window has an assignable alarm priority level
- By increasing the alarm priority level of an alarm window, lower priority alarms are suppressed from the alarm window
SCADA Alarm Processing / Filtering Capabilities (continued)

- Timed Alarm Suppression
 - Each data point may be assigned a transient filter
 - Used to suppress an alarm until it has remained in the alarm state for the length of time specified with the transient filter
SCADA Alarm Processing / Filtering Capabilities (continued)

- Momentary Alarm Change Detect
 - Tracks rapid multiple state changes that are recorded by the RTU
 - Operations counter to track device operations for maintenance reporting
SCADA Alarm Processing / Filtering Capabilities (continued)

- Alarm Acknowledge / Delete
 - Separate acknowledge and delete actions
 - Alarm automatically deleted upon acknowledgment if alarm has returned to normal
 - On acknowledgment alarm will be deleted from alarm list
 - Alarm is deleted after a specified time delay following acknowledgment of alarm
SCADA Alarm Processing / Filtering Capabilities (continued)

- Historical Events File
 - All events, including alarms, stored in a daily file
 - Can be sorted and used to create reports
System Site Testing
Power System Action Time Frames

- **Transient Stability**
 - Generator/excitation dynamics
 - Mech.
 - Switched cap’s
 - SVC, DC
 - SVC, DC
 - Relaying, incl. under-frequency load shedding

- **Long-term Stability**
 - LTCs & dist. voltage reg.
 - Excitation limiting
 - Under-voltage load shedding
 - Line/transformer overload
 - System operator

Time - Seconds

0.1 1 10 100 1000 10000
This is the end of Part 2. You may select from the following options, or close this window to return to the site where you linked to this presentation.

- Part 1
- Part 2
- Part 3
- PES Web Site
- IEEE USA Web Site