1. Let \(x(t) = 2e^{-3t}u(t) \). Use Laplace Transform properties to find the Laplace Transform of the following.

 a. \(y(t) = \int_{0}^{t} x(\tau) d\tau \)

 b. \(y(t) = x(t - a)u(t - a) \), for fixed \(a > 0 \)

 c. \(y(t) = e^{-at}x(t) \)

 d. \(y(t) = tx(t) \)

 e. \(y(t) = 2e^{-3t}u(t - 1) \)
2. Let \(x(t) = 8\cos(12t)u(t) \). Use Laplace Transform properties to find the Laplace Transform of the following. Sketch pole/zero locations of \(X(s) \) and \(Y(s) \).

a. \(y(t) = \int_0^t x(\tau)d\tau \)

b. \(y(t) = \frac{dx(t)}{dt} \)

c. \(y(t) = e^{-at}x(t) \), for fixed \(a > 0 \)
3. Use Laplace transform properties and partial fraction expansion to find the inverse Laplace transform of the following.

a. \(X(s) = \frac{2}{s(s+3)} \)

b. \(X(s) = \frac{2s}{s+3} \)

c. \(X(s) = \frac{2e^{-4s}}{s+3} \)

d. \(X(s) = \frac{s}{(s+2)^2} \)