1. A signal, \(x(t) \), is periodic with period \(T = 0.01 \) sec. It’s exponential Fourier series has the coefficients

\[
c_k = \begin{cases}
2, & k = 0 \\
3, & k = 1, -1 \\
j2, & k = 2 \\
j2, & k = -2 \\
1, & k = 4, -4 \\
0, & \text{otherwise}
\end{cases}
\]

a. Determine the signal, \(x(t) \). Simplify as much as possible.
b. Determine the power in \(x(t) \).
c. Determine the normalized mean square truncation error in the truncated Fourier series

\[
x_N(t) = \sum_{k=-N}^{N} c_k e^{j2\pi k t / T}
\]

for the cases

i. \(N = 1 \).

ii. \(N = 4 \).

d. The signal \(x(t) \) is applied as input to a linear, time-invariant system with the Fourier transform (frequency response) shown below. Determine the filter output, \(y(t) \). (Use the Fourier transform of \(x(t) \), or its Fourier series spectrum.)

\[
H(\omega) = e^{-j\omega t_0} M(\omega), \quad t_0 = 0.002 \text{ sec}
\]

2. The signal \(x(t) = 600 \sin(300t) \) is applied as input to the filter in problem 1d). Find the filter output, \(y(t) \).