Adversarial Search

School of EECS
Washington State University
Games

- Classic AI challenge
 - Easy to represent
 - Difficult to solve
- Zero-sum games
 - Total final reward to all players is constant
- Perfect information (e.g., Chess, Checkers)
 - Fully observable and deterministic
- Imperfect information (e.g., Poker)
- Chance (e.g., Backgammon)
Tic–Tac–Toe

- Average branching factor about 2
- Average game length about 8
- Search tree has about $2^8 = 256$ nodes
- State space (search graph) has about $3^9 = 19,683$ nodes
Game Tree

- MAX wants to maximize its outcome
- MIN wants to minimize its outcome
- Search tree refers to the search for a player’s next move
- Terminal node
- Utility
Chess

- Average branching factor about 35
- Average game length about 100 (50 moves per player)
- Search tree has about $35^{100} = 10^{154}$ nodes
- State space (search graph) about 10^{40} nodes

Garry Kasparov vs. IBM's Deep Blue (1997)
Optimal Play

MAX

MIN

Artificial Intelligence 6
Optimal Play

- **Minimax value**
 - Best player can achieve assuming all players play optimally

 \[
 \text{Minimax}(s) = \begin{cases}
 \text{Utility}(s) & \text{if } \text{TerminalTest}(s) \\
 \max_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if } \text{Player}(s) = \text{MAX} \\
 \min_{a \in \text{Actions}(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if } \text{Player}(s) = \text{MIN}
 \end{cases}
 \]

- **Minimax decision**
 - Action that leads to minimax value
Minimax Algorithm

function MINIMAX-DECISION \((state)\) returns an action

\[
\text{return arg max}_{a \in \text{ACTIONS}(state)} \text{MIN-VALUE(RESULT}(state,a))
\]

function MAX-VALUE \((state)\) returns a utility value

\[
\text{if TERMINAL-TEST}(state) \text{ then return UTILITY}(state) \\
v \leftarrow -\infty \\
\text{for each } a \text{ in ACTIONS}(state) \text{ do} \\
v \leftarrow \text{MAX}(v, \text{MIN-VALUE(RESULT}(state,a))) \\
\text{return } v
\]

function MIN-VALUE \((state)\) returns a utility value

\[
\text{if TERMINAL-TEST}(state) \text{ then return UTILITY}(state) \\
v \leftarrow \infty \\
\text{for each } a \text{ in ACTIONS}(state) \text{ do} \\
v \leftarrow \text{MIN}(v, \text{MAX-VALUE(RESULT}(state,a))) \\
\text{return } v
\]
Minimax Demo

www.yosenspace.com/posts/computer-science-game-trees.html
Minimax Algorithm

- Essentially depth-first search of game tree
- Time complexity: $O(b^m)$
 - $m = \text{maximum tree depth}$
 - $b = \text{legal moves at each state}$
- Space complexity
 - Generates all actions: $O(bm)$
 - Generates one action: $O(m)$
- Practical?
Pruning Search Tree

(a) \([-\infty, +\infty]\)

[b] \([-\infty, 3]\)

3

(b) \([-\infty, +\infty]\)

[b] \([-\infty, 3]\)

3 12

(c) \([3, +\infty]\)

[b] \([3, 3]\)

3 12 8

(d) \([3, +\infty]\)

[b] \([3, 3]\)

3 12 8 2

(e) \([3, 14]\)

[b] \([3, 3]\)

3 12 8 2 14

(f) \([3, 3]\)

[b] \([3, 3]\)

3 12 8 2 14 5 2
Alpha–Beta Pruning

- Prune parts of the search tree that MAX and MIN would never choose

- \(\alpha = \) value of best choice for MAX so far (highest value)

- \(\beta = \) value of best choice for MIN so far (lowest value)

- Keep track of alpha \(\alpha \) and beta \(\beta \) during search

If \(m > n \), Player will never move to \(n \).
function **Alpha-Beta-Search** (*state*) returns an action

\[v \leftarrow \text{Max-Value}(state, -\infty, +\infty) \]

return the *action* in \text{ACTIONS}(state) with value \(v \)

function **Max-Value** (*state*, \(\alpha \), \(\beta \)) returns a utility value

if **Terminal-Test**(*state*) then return **Utility**(*state*)

\[v \leftarrow -\infty \]

for each *a* in \text{ACTIONS}(state) do

\[v \leftarrow \text{Max}(v, \text{Min-Value}(*\text{Result}(state,a)*, \alpha, \beta)) \]

if \(v \geq \beta \) then return \(v \)

\(\alpha \leftarrow \text{Max}(\alpha, v) \)

return \(v \)

function **Min-Value** (*state*, \(\alpha \), \(\beta \)) returns a utility value

if **Terminal-Test**(*state*) then return **Utility**(*state*)

\[v \leftarrow +\infty \]

for each *a* in \text{ACTIONS}(state) do

\[v \leftarrow \text{Min}(v, \text{Max-Value}(*\text{Result}(state,a)*, \alpha, \beta)) \]

if \(v \leq \alpha \) then return \(v \)

\(\beta \leftarrow \text{Min}(\beta, v) \)

return \(v \)
Alpha–Beta Pruning Demo

- inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice
Move Ordering

- **ALPHA–BETA–SEARCH** still $O(b^m)$ worst case
- If order moves by value, then could prune maximally (always choose best move next)
 - Achieve $O(b^{m/2})$ time
 - Effective branching factor $b^{1/2}$
 - Chess: $35 \rightarrow 6$
 - But not practical
- Choosing moves randomly
 - Achieve $O(b^{3m/4})$ average case
- Choosing moves based on impact
 - E.g., chess: captures, threats, forward, backward
 - Closer to $O(b^{m/2})$
Real-Time Game Play

- Minimax and Alpha–Beta search to terminal nodes
- Impractical for most games due to time limits
- Employ cutoff test to treat nodes as terminal nodes
- Heuristic evaluation function at these nodes to estimate utility
- \(d = \text{depth} \)

\[
H - \text{Minimax}(s, d) = \\
\begin{cases}
\text{Eval}(s) & \text{if CutoffTest}(s, d) \\
\max_{a \in \text{Actions}(s)} H - \text{Minimax}(\text{Result}(s, a), d + 1) & \text{if Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} H - \text{Minimax}(\text{Result}(s, a), d + 1) & \text{if Player}(s) = \text{MIN}
\end{cases}
\]
Real-Time Game Play

- Heuristic evaluation function $\text{EVAL}(s)$
 - Weighted linear combination of features
 \[\text{Eval}(s) = \sum_{i=1}^{n} w_i f_i(s) \]
 - E.g., chess
 - $f_1(s) =$ #pawns, $w_1 = 1$
 - $f_4(s) =$ #bishops, $w_4 = 3$
 - Weighted non-linear combination of features
 - Learn weights
 - Learn features
Cutoff test
- Cutoff at a fixed depth limit
- Iterative deepening until time runs out
- Cutoff only at quiescent states
 - No eminent large changes in evaluation function
 - E.g., captures in chess
- Horizon effect pushes inevitable bad outcomes beyond cutoff depth
 - Singular extension continues search along moves that look clearly better than others
Other Speedups

- Transposition table
 - States can be reached from different paths
 - Hash table keeps track of explored states and their values

- Opening and ending move databases
 - Fewer choices at opening and end of game
 - Memorize optimal strategies
Go

- Average branching factor about 250
- Average game length about 200 (100 moves per player)
- Search tree has about $250^{200} = 10^{480}$ nodes
- State space (search graph) about 10^{170} nodes

Lee Sedol vs. Google DeepMind’s AlphaGo (2016)

www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go
Stochastic Games

- Element of chance (e.g., dice roll)
- Include chance nodes in game tree
 - Branch to possible outcomes with their probabilities
Stochastic Games

- Can’t compute minimax values
- Can compute expected minimax values

\[
\text{ExpectiMinimax}(s) = \begin{cases}
\text{Utility}(s) & \text{if} \quad \text{TerminalTest}(s) \\
\max_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if} \quad \text{Player}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{ExpectiMinimax}(\text{Result}(s, a)) & \text{if} \quad \text{Player}(s) = \text{MIN} \\
\sum_r P(r) \text{ExpectiMinimax}(\text{Result}(s, r)) & \text{if} \quad \text{Player}(s) = \text{CHANCE}
\end{cases}
\]

- r represents possible chance event (e.g., dice roll)
- $\text{Result}(s, r) = \text{state } s \text{ with a particular outcome } r$
Stochastic Games

- Chance nodes increase branching factor
- Search time complexity $O(b^{mn^m})$
 - Where n is the number of chance outcomes
 - E.g., backgammon: $n = 21$, $b \approx 20$ (can be large)
 - Can only search a few moves ahead
- Estimate ExpectiMinimax values
Can reason about all possible states of unknown information

If $P(s)$ represents probability of each unknown state s, then best move is:

$$\arg \max_a \sum_s P(s) \text{Minimax}(\text{Result}(s, a))$$

If $|s|$ too large, take a random sample

- Monte Carlo method
State of the Art

- **Chess**
 - Komodo (komodochess.com) – proprietary
 - Stockfish (stockfishchess.org) – open source

- **Checkers (solved, perfect play)**
 - Chinook (webdocs.cs.ualberta.ca/~chinook)
 - Open/close database plus brute-force search

- **Backgammon**
 - Extreme Gammon (www.extremegammon.com)
 - GNU Backgammon (www.gnubg.org)
 - Neural network based evaluation function

- **Poker**
 - DeepStack (poker.cs.ualberta.ca)
 - Libratus (en.wikipedia.org/wiki/Libratus)

- **Go (Hard: 19x19 board, b >200)**
 - AlphaGo (deepmind.com/research/alphago)
 - Zen (senseis.xmp.net/?ZenGoProgram)
Summary

- Adversarial search and games
- Minimax search
- Alpha–beta pruning
- Real–time issues
- Stochastic and partially observable games
- State of the art ...

In what games can humans still beat computers?