Intelligent Agents

School of EECS
Washington State University
Overview

- What is an agent?
- Rational agent
- Types of environments
- Types of agents
Agent

- An agent perceives its *environment* through *sensors* and acts on its environment through *actuators*
- Perceptual inputs to the agent are called *percepts*
- Percept sequence is the complete history of the agent’s percepts
Agent function maps percept sequence to action
Agent program implements agent function

Vacuum World

Vacuum Agent Function

- [A, Dirty] → Suck
- [B, Dirty] → Suck
- [A, Clean] → Right
- [B, Clean] → Left

Vacuum Agent Program

```plaintext
Action VacuumAgent (Percept percept) {
    if (percept = [?, Dirty])
        then return Suck
    if (percept = [A, Clean])
        then return Right
    if (percept = [B, Clean])
        then return Left
}
```
Rational Agent

- Rational Agent takes actions that maximize the performance measure given the percept sequence and any prior knowledge.

- Performance measures?
- Prior knowledge?
- Is VacuumAgent rational?
Rational Agent

- Not omniscient
- Acts to gather information (exploration)
- Learns and adapts (autonomy)
“Rational” Taxicab Agent

- Depends on the task

Johnny Cab from “Total Recall” (1990)
Task Environment

- **PEAS**
 - **Performance**
 - **Environment**
 - **Actuators**
 - **Sensors**

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Performance</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi Driver</td>
<td>Safety, speed, comfort, maximize profits</td>
<td>Roads, traffic, pedestrians, customers</td>
<td>Steering, accelerator, brake, signal, horn, display</td>
<td>Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard</td>
</tr>
</tbody>
</table>

Waymo: https://www.youtube.com/watch?v=B8R148hFxPw
Task Environment Examples

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Performance</th>
<th>Environment</th>
<th>Actuators</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puzzle solver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part picker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task Environment Properties

- Fully observable vs. partially observable
 - Do sensors give complete state of environment
- Single agent vs. multiagent
 - Are there other agents in the environment whose performance is affected by this agent

- Puzzle solver?
- Part picker?
Task Environment Properties

- Deterministic vs. stochastic
 - Next state of environment completely determined by current state and agent’s action
- Episodic vs. sequential
 - Future percepts and actions do not depend on past percepts and actions

- Puzzle solver?
- Part picker?
Task Environment Properties

- Static vs. dynamic
 - Can the environment change while the agent is deliberating

- Discrete vs. continuous
 - Are there a fixed number of environment states

- Known vs. unknown
 - Are the effects of actions known

- Puzzle solver?
- Part picker?
Wumpus World

- Hunt the Wumpus game
 - Written in BASIC, 1972
 - First available on the TI–99/4A
Wumpus World (PEAS)

- Performance measure
 - +1000 for leaving cave with gold
 - −1000 for falling in pit or being eaten by wumpus
 - −1 for each action taken
 - −10 for using the arrow
 - Game ends when agent dies or leaves cave
Wumpus World (PEAS)

- Environment
 - 4x4 grid of rooms
 - Agent starts in square [1,1] facing right
 - Location of wumpus and gold chosen at random other than [1,1]
 - Each square other than [1,1] has a 0.2 probability of containing a pit
Wumpus World (PEAS)

- **Actuators**
 - **Forward**
 - **TurnLeft by 90°**
 - **TurnRight by 90°**
 - **Grab** picks up gold if agent in gold location
 - **Shoot** shoots arrow in direction agent is facing
 - Arrow continues until hits wumpus or wall
 - **Climb** leaves cave if agent in [1,1]
Wumpus World (PEAS)

- **Sensors (Boolean)**
 - *Stench* if wumpus in directly (not diagonally) adjacent square
 - *Breeze* if pit in directly adjacent square
 - *Glitter* if gold in agent’s current square
 - *Bump* if agent walks into a wall
 - *Scream* if wumpus is killed
Wumpus Environment

- Fully or partially observable?
- Discrete or continuous?
- Static or dynamic?
- Deterministic or stochastic?
- Single or multi-agent?
- Episodic or sequential?
- Known or unknown?
Details of design based on task (PEAS) and properties of environment

Action Agent (Percept percept)
{
 Process percept
 Choose action
 return action
}
Table-driven Agent

- Table: Percepts → Actions
- Where does table come from?
- How large is table?

```plaintext
Action TableDrivenAgent (Percept percept)
{
  PerceptSequence percepts
  Table T

  Append percept to end of percepts
  action = Lookup (percepts, T)
  return action
}
```
Where do rules come from?
Random component to avoid repetitive behavior

Action SimpleReflexAgent (Percept percept)
{
 RuleSet rules

 state = InterpretInput (percept)
 rule = RuleMatch (state, rules)
 action = rule.action
 return action
}
Model-based Reflex Agent

- Model describes how world evolves and effects of actions
- Where do model and rules come from?
- How to represent state and model?

Action ModelBasedReflexAgent (Percept percept)
{
 RuleSet rules
 Model model

 state = UpdateState (state, action, percept, model)
 rule = RuleMatch (state, rules)
 action = rule.action
 return action
}
Goal–based Agent

- Search for sequence of actions to achieve goals
- Model, state, goals
 - Source?
 - Representation?
Utility-based Agent

- Search for sequence of actions to reach a high utility state
- Maximize expected utility
- Model, state, utility
 - Source?
 - Representation?
Learning Agent

- Learning element changes agent to improve performance
 - Models, rules, goals
- Performance element one of previous agents
- Critic provides feedback on how the agent is doing
- Problem generator drives agent to explore
State Representation

- Expressiveness vs. complexity of reasoning and learning
- Taxi world state?

(a) Atomic
(b) Factored
(b) Structured

Single variable
Feature vector
Relational database

Propositional logic
Bayesian network
First-order logic
Graph
Summary

- Rational agent seeks to maximize performance
- Agent’s task defined in terms of performance, environment, actuators and sensors
- Agent’s environment defined in terms of multiple dimensions (observability, ...)
- Agent’s function defined in terms of reflexes, models, goals or utilities
- All agents can benefit from learning