Probabilistic Reasoning

School of EECS
Washington State University
Probabilistic Reasoning

- Full joint probability distribution
 - Can answer any query
 - But typically too large
- Conditional independence
 - Can reduce the number of probabilities needed
 - \(P(X \mid Y,Z) = P(X \mid Z) \), if \(X \) independent of \(Y \) given \(Z \)
- Bayesian network
 - Concise representation of above
Bayesian Network

Example

![Bayesian Network Diagram]

- $P(B) = 0.001$
- $P(E) = 0.002$

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>$P(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.95</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.94</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.29</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>$P(J)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.90</td>
</tr>
<tr>
<td>f</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>$P(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.70</td>
</tr>
<tr>
<td>f</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Bayesian Network

- Bayesian network is a directed, acyclic graph
- Each node corresponds to a random variable
- A directed link from node X to node Y implies that X “influences” Y
 - X is the parent of Y
- Each node X has a conditional probability distribution $P(X \mid \text{Parents}(X))$
 - Quantifies the influence on X from its parent nodes
 - Conditional probability table (CPT)
Bayesian Networks

- Represents full joint distribution

\[P(X_1 = x_1 \land \ldots \land X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i \mid \text{parents}(X_i)) \]

\[P(x_1, \ldots, x_n) = \prod_{i=1}^{n} P(x_i \mid \text{parents}(X_i)) \]

- Represents conditional independence
 - E.g., JohnCalls is independent of Burglary and Earthquake given Alarm
Bayesian Networks

- \[P(b, \neg e, a, j, m) = (0.001)(0.998)(0.94)(0.90)(0.70) = 0.000591 \]
Constructing Bayesian Networks

- Determine set of random variables \(\{X_1, \ldots, X_n\} \)
- Order them so that causes precede effects
- For \(i = 1 \) to \(n \) do
 - Choose minimal set of parents for \(X_i \) such that \(P(X_i \mid X_{i-1}, \ldots, X_1) = P(X_i \mid \text{Parents}(X_i)) \)
 - For each parent \(X_k \) insert link from \(X_k \) to \(X_i \)
 - Write down the CPT, \(P(X_i \mid \text{Parents}(X_i)) \)

- E.g., Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
Constructing Bayesian Networks

- Bad orderings lead to more complex networks with more CPT entries
 a) MaryCalls, JohnCalls, Alarm, Burglary, Earthquake
 b) MaryCalls, JohnCalls, Earthquake, Burglary, Alarm
Example: Tooth World

- Variables: Cavity, Toothache, Catch

- Probabilities:
 - P(Toothache) = 0.6
 - P(Cavity) = 0.2
 - P(Catch) = 0.9

- Truth values:
 - Toothache: true, false
 - Catch: true, false
 - Cavity: true, false

- Joint probability table:

<table>
<thead>
<tr>
<th>Cavity</th>
<th>P(Toothache)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.6</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cavity</th>
<th>P(Catch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>toothache</th>
<th>¬toothache</th>
<th>catch</th>
<th>¬catch</th>
<th>catch</th>
<th>¬catch</th>
</tr>
</thead>
<tbody>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
<td>.072</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>¬cavity</td>
<td>.016</td>
<td>.064</td>
<td>.144</td>
<td>.576</td>
<td></td>
</tr>
</tbody>
</table>
Node X is conditionally independent of its non-descendants (Z_{ij}’s) given its parents (U_i’s)

Markov blanket of node X is X’s parents (U_i’s), children (Y_i’s) and children’s parents (Z_{ij}’s)

Node X is conditionally independent of all other nodes in the network given its Markov blanket
Inference in Bayesian Networks

- Want $P(X \mid e)$
- X is the **query variable** (can be more than one)
- e is an observed event, i.e., values for the evidence variables $E = \{E_1, \ldots, E_m\}$
- Any other variables Y are hidden variables

Example

- $P(\text{Burglary} \mid \text{JohnCalls}=\text{true}, \text{MaryCalls}=\text{true}) = ?$
- $X = \text{Burglary}$
- $e = \{\text{JohnCalls}=\text{true}, \text{MaryCalls}=\text{true}\}$
- $Y = \{\text{Earthquake}, \text{Alarm}\}$
Inference by Enumeration

- Enumerate over all possible values for \(Y \)
 - \(P(X \mid e) = \alpha P(X,e) = \alpha \sum_Y P(X,e,y) \)

- Example
 - \(P(\text{Burglary} \mid \text{JohnCalls}=true, \text{MaryCalls}=true) \)
 - \(P(B \mid j,m) = \alpha P(B,j,m) = \alpha \sum_e \sum_a P(B,j,m,e,a) \)
 - Let \(b \) represent \((B=true) \)
 - \(P(b \mid j,m) = \alpha \sum_e \sum_a P(b)P(e)P(a\mid b,e)P(j\mid a)P(m\mid a) \)
 - \(P(b \mid j,m) = \alpha P(b) \sum_e P(e)\sum_a P(a\mid b,e)P(j\mid a)P(m\mid a) \)
Inference by Enumeration

- \(P(b \mid j,m) = \alpha P(b) \sum_e P(e) \sum_a P(a \mid b,e)P(j \mid a)P(m \mid a) \)
- \(P(B \mid j,m) = \alpha \langle 0.0005922, 0.0014919 \rangle = \langle 0.284, 0.716 \rangle \)
Inference by Enumeration

function `ENUMERATION-ASK (X, e, bn)` **returns** a distribution over X

inputs: X, the query variable
e, observed values of variables E
bn, a Bayes net with variables \{X\} \cup E \cup Y \quad // \text{Y = hidden variables}

Q(X) ← a distribution over X, initially empty

for each value \(x_i\) of \(X\) **do**

\(Q(x_i) \leftarrow \text{ENUMERATE-ALL}(bn.\text{VARS}, e_{x_i})\)

where \(e_{x_i}\) is \(e\) extended with \(X = x_i\)

return \(\text{NORMALIZE}(Q(X))\)

\begin{itemize}
 \item `bn.\text{VARS}` has variables in cause→effect order
\end{itemize}

function `ENUMERATE-ALL (vars, e)` **returns** a real number

if `EMPTY? (vars)` **then return** 1.0

\(Y \leftarrow \text{FIRST}(vars)\)

if \(Y\) has value \(y\) in \(e\)

then return \(P(y | parents(Y)) \times \text{ENUMERATE-ALL}((\text{REST}(vars)), e)\)

else return \(\sum_y P(y | parents(Y)) \times \text{ENUMERATE-ALL}((\text{REST}(vars)), e_y)\)

where \(e_y\) is \(e\) extended with \(Y = y\)
Inference by Enumeration

- **ENUMERATION-ASK** evaluates trees using depth-first recursion
- Space complexity $O(n)$
- Time complexity $O(v^n)$, where each of n variables has v possible values
Inference by Enumeration

Note redundant computation
Efficient Inference

- Avoid redundant computation
 - Dynamic programming
 - Store intermediate computations and reuse
- Eliminate irrelevant variables
 - Variables that are not an ancestor of a query or evidence variable
Complexity of Inference

- General case (any type of network)
 - Worst case space and time complexity is exponential
- **Polytree** is a network with at most one undirected path between any two nodes
 - Space and time complexity is linear in size of network
Approximate Inference

- “Improbability Drive”

Approximate Inference

- Exact inference can be too expensive
- Approximate inference
 - Estimate probabilities from sample, rather than computing exactly
- Monte Carlo methods
 - Choose values for hidden variables, compute query variables, repeat and average
- Direct sampling
- Markov chain sampling
Direct Sampling

- Choose value for variables according to their CPT
 - Consider variables in topological order

- E.g.,
 - \(P(B) = \langle 0.001, 0.999 \rangle, \ B=\text{false} \)
 - \(P(E) = \langle 0.002, 0.998 \rangle, \ E=\text{false} \)
 - \(P(A|B=\text{false}, E=\text{false}) = \langle 0.001, 0.999 \rangle, \ A=\text{false} \)
 - \(P(J|A=\text{false}) = \langle 0.05, 0.95 \rangle, \ J=\text{false} \)
 - \(P(M|A=\text{false}) = \langle 0.01, 0.99 \rangle, \ M=\text{false} \)
 - Sample is \([\text{false}, \text{false}, \text{false}, \text{false}, \text{false}, \text{false}, \text{false}]\)

\[
P(X = x_i) \approx \frac{|\text{samples where } X = x_i|}{|\text{samples}|}
\]
Markov Chain Sampling

- New sample generated by random changes to preceding sample
 - Not generated from scratch
- Markov Chain Monte Carlo (MCMC)
- Gibbs sampling
 - Fix evidence variables to observed values
 - Randomly set non-evidence variables
 - Repeat for desired number of samples
 - Randomly choose a non-evidence variable X
 - Randomly choose new value for X based on CPT
 - Generate sample
Gibbs sampling example

E.g., \(P(B|J=\text{true}, M=\text{true}) \)

- Evidence: \(J=\text{true}, M=\text{true} \)
- Random initial state: \(B=\text{true}, E=\text{false}, A=\text{true} \)
- \(P(B) = \langle 0.001, 0.999 \rangle, B=\text{false} \)
 - Sample 1: [false, false, true, true, true]
- \(P(E) = \langle 0.002, 0.998 \rangle, E=\text{false} \)
 - Sample 2: [false, false, true, true, true]
- \(P(A|B=\text{false}, E=\text{false}) = \langle 0.001, 0.999 \rangle, A=\text{false} \)
 - Sample 3: [false, false, false, true, true]
- Repeat for more \(B \)'s, \(E \)'s and \(A \)'s (any order)
Approximate Inference

- Sampling techniques converge to correct probabilities given enough samples
Bayes Net Software

- Commercial
 - Bayes Server (www.bayesserver.com)
 - BayesiaLab (www.bayesia.com)
 - Netica APIs (www.norsys.com)
 - HUGIN (www.hugin.com)

- Free
 - BayesPy (www.bayespy.org)
 - JavaBayes (www.cs.cmu.edu/~javabayes)
 - SMILE (www.bayesfusion.com)

- Sample networks
 - www.bnlearn.com/bnrepository
Summary: Probabilistic Reasoning

- Bayesian networks
 - Captures full joint probability distribution and conditional independence
- Exact inference
 - Intractable in worst case
- Approximate inference
 - Sampling
 - Converges to exact inference