Overview

- Problem-solving agent
- Formulating problems
- Search
- Uninformed search
- Informed (heuristic) search
- Heuristics
- Admissibility
Problem-Solving Agent

- Goal-based
- Atomic state representation
- Assume solution is a fixed sequence of actions
- Rationality: Achieve goal (minimize cost)
- Search for sequence of actions achieving goal
Environment Assumptions

- **Observable**
 - Agent always knows what state it is in

- **Deterministic**
 - Each action has one possible outcome (next state)

- **Discrete**
 - Each state has finite number of applicable actions

- **Known**
 - Agent knows which state each action will lead to

- Once solution sequence known, execute blindly (ignore percepts) until completion
Wumpus World Example

- Initial state →
- Goal state
 - Any state where agent has gold and not in cave
- Solution?
Problem–Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
persistent: seq, an action sequence initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation
state ← UPDATE-STATE (state, percept)
if seq is empty then
 goal = FORMULATE-GOAL (state)
 problem = FORMULATE-PROBLEM (state, goal)
 seq = SEARCH (problem)
 if seq = failure then return a null action
action = FIRST (seq)
seq = REST (seq)
return action
Well-Defined Problems

- State representation (atomic, but…)
- Action definitions (action: state \(\rightarrow \) state)
- Five parts
 - Initial state
 - Actions
 - Transition model
 - Goal test
 - Path cost
Well-Defined Problems (5 parts)

1. **Initial state**
2. **Actions**
 - \texttt{ACTIONS}(s) returns set of actions applicable to state \texttt{s}
3. **Transition model**
 - \texttt{RESULT}(s,a) returns state resulting from taking action \texttt{a} in state \texttt{s}
 - \texttt{Successor state} is any state reachable from the current state by a single action

- **State space** is set of all states reachable from the initial state by any sequence of actions
- State space forms a \texttt{directed graph} of nodes (states) and edges (actions)
- **Path** in state space is a sequence of states connected by actions
Vacuum World State Space
4. **Goal test**
 - True for any state satisfying goal

5. **Path cost**
 - Sum of the costs of the individual actions along the path
 - **Step cost** $c(s,a,s')$ is the cost of taking action a in state s to reach state s'
 - Non-negative

- **Solution** is sequence of actions leading from the initial state to a goal state
- **Optimal solution** is a solution with minimal path cost
State representation
- Location of vacuum: Left, Right
- Cleanliness of each room: Clean, Dirty
- Example state: (Left,Clean,Clean)
- How many unique states?

Initial state: Any state

Actions: Left, Right, Suck

Transition model
- E.g., Result((Left,Dirty,Clean), Suck) = (Left,Clean,Clean)

Goal test: State = (?,Clean,Clean)

Path cost
- Number of actions in solution (step cost = 1)
8-Puzzle

- **State**: Location of each tile (and blank)
 - E.g., (8,1,2,3,4,5,6,7,8)
 - How many states?
- **Initial state**: Any state
- **Actions**: Move blank Up, Down, Left or Right
- **Transition model**
- **Goal test**: State matches Goal State
- **Path cost**: Number of steps in path (step cost = 1)
Search

- Search tree
 - Root node is initial state
 - Node branches for each applicable move from node’s state
 - Frontier consists of the leaf nodes that can be expanded
 - Repeated states (*)
 - Goal state
Search Demo

- Nice 8–puzzle search web app

- Code
 - http://github.com/tristanpenman/n–puzzle

Initial State

```
1 2 3
4 5
7 8 6
```

Goal State

```
1 2 3
4 5 6
7 8
```
Real-World Search Problems

- Route finding
- Touring
- Circuit layouts
- Robot navigation
- Assembly sequencing
- Chemical design

- Most of AI can be cast as a search problem
Route Finding Example

- Romania road map
- Initial state: Arad
- Goal state: Bucharest
Route Finding Example
Search Tree

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Duplicate

Bucharest
Tree Search

function Tree-Search (problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the node, adding the resulting nodes to the frontier

- Search strategy determines how nodes are chosen for expansion
- Suffers from repeated state generation
Graph Search

function **GRAPH-SEARCH** *(problem)* returns a solution, or failure
initialize the frontier using the initial state of *problem*
initialize the explored set to be empty

loop do
 if the frontier is empty **then return** failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state **then return** the corresponding solution
 add the node to the explored set
 expand the node, adding the resulting nodes to the frontier
 only if not in the frontier or explored set

- Keep track of explored set to avoid repeated states
- Changes from **TREE-SEARCH** **highlighted**
Graph Search Example

Oradea
no longer expanded
function **CHILD-NODE** (*problem, parent, action*) returns a node

return a node with

- **STATE** = *problem*.RESULT (*parent*.STATE, *action*),
- **PARENT** = *parent*,
- **ACTION** = *action*,
- **PATH-COST** = *parent*.PATH-COST +

 problem.STEP-COST (*parent*.STATE, *action*)
Implementation

- Frontier is a queue or stack
 - How nodes are added/removed defines search strategy
- Explored set is a hash table
 - Can be large (\# unique states)
 - Key is some canonical state representation
Measuring Performance

- **Completeness**
 - Is the search algorithm guaranteed to find a solution if one exists?

- **Optimality**
 - Does the search algorithm find the optimal solution?

- **Time and space complexity**
 - **Branching factor** b (maximum successors of a node)
 - **Depth** d of shallowest goal node
 - **Maximum path length** m
 - Complexity $O(b^d)$ to $O(b^m)$
Uninformed Search Strategies

- No preference over states based on “closeness” to goal
- Strategies
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
 - Bidirectional search
Breadth-First Search

- Expand shallowest nodes in frontier
- Frontier is a simple queue
 - Dequeue nodes from front, enqueue nodes to back
 - First-In, First-Out (FIFO)
function BREADTH-FIRST-SEARCH (problem) returns a solution, or failure

 node ← a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

 frontier ← FIFO queue with node as only element
 explored ← empty set

 loop do
 if EMPTY(frontier) then return failure
 node ← DEQUEUE(frontier) // choose shallowest node in frontier
 add node.STATE to explored

 for each action in problem.ACTIONS(node.STATE) do
 child = CHILD-NODE(problem, node, action)
 if child.STATE is not in explored or frontier then
 if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)

 frontier ← ENQUEUE(child, frontier)
Breadth-First Search

8-puzzle demo

Initial State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Breadth-First Search

- Complete?
- Optimal?
- Time complexity
 - Number of nodes generated (worst case)
 \[\sum_{i=0}^{d} b^i = \frac{b^{d+1} - 1}{b - 1} = O(b^d) \]
- Space complexity
 - \(O(b^{d-1}) \) nodes in explored set
 - \(O(b^d) \) nodes in frontier
 - Total \(O(b^d) \)
Breadth–First Search

- Exponential complexity $O(b^d)$
- For $b=4$, 1KB/node, 1M nodes/sec

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>0.02 ms</td>
<td>16 KB (10^3)</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>0.26 ms</td>
<td>256 KB (10^3)</td>
</tr>
<tr>
<td>8</td>
<td>65,536</td>
<td>0.07 sec</td>
<td>65 MB (10^6)</td>
</tr>
<tr>
<td>16</td>
<td>4.3B</td>
<td>71.6 min</td>
<td>4.3 TB (10^{12})</td>
</tr>
<tr>
<td>20</td>
<td>10^{12}</td>
<td>12.7 days</td>
<td>1 PetaByte (10^{15})</td>
</tr>
<tr>
<td>30</td>
<td>10^{18}</td>
<td>366 centuries</td>
<td>1 ZettaByte (10^{21})</td>
</tr>
</tbody>
</table>
Uniform–Cost Search

- Expand node n with lowest path cost $g(n)$
- Frontier is a priority queue
 - Queue partially ordered by path cost
 - Lowest path cost node always at the front
function **UNIFORM-COST-SEARCH** *(problem)* returns a solution, or failure

node ← a node with STATE = problem.INITIAL-STATE, PATH-COST = 0

frontier ← priority queue ordered by PATH-COST, with node as only element

explored ← empty set

loop do

 if EMPTY(frontier) then return failure

 node ← DEQUEUE(frontier) // choose lowest cost node in frontier

 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

 add node.STATE to explored

 for each action in problem.ACTIONS(node.STATE) do

 child = CHILD-NODE(problem, node, action)

 if child.STATE is not in explored or frontier then

 frontier ← ENQUEUE(child, frontier)

 else if child.STATE is in frontier with higher PATH-COST then

 replace that frontier node with child
Uniform–Cost Search

- Example (Sibiu → Bucharest)
Uniform–Cost Search

- Complete?
- Optimal?
- Time and space complexity
 - $b =$ branching factor
 - $\varepsilon =$ minimum step cost (>0)
 - $C^* =$ cost of optimal solution

$$O(b^{1+\left\lfloor C^*/\varepsilon \right\rfloor})$$
Depth–First Search

- Always expand the deepest node
- Frontier is a simple stack
 - Push nodes to front, pop nodes from front
 - Last–In, First–Out (LIFO)
- Otherwise, same code as BFS
- Or, implement recursively
Depth-First Search

DEMO
Depth–First Search

- **Tree–Search version**
 - Not complete (infinite loops)
 - Not optimal

- **Graph–Search version**
 - Complete
 - Not optimal

- **Time complexity** ($m = \text{max depth}$): $O(b^m)$

- **Space complexity**
 - Tree–search: $O(bm)$
 - Graph–search: $O(b^m)$
Function **Depth-Limited Search**

```plaintext
function Depth-Limited-Search (problem, limit) returns a solution, or failure/cutoff
return Recursive-DLS (Make-Node (problem.Initial-State), problem, limit)
```

Function **Recursive-DLS**

```plaintext
function Recursive-DLS (node, problem, limit) returns a solution, or failure/cutoff
if problem.Goal-Test(node.State) then return Solution(node)
else if limit = 0 then return cutoff
else

cutoff_occurred ← false
for each action in problem.Actions(node.State) do
  child = Child-Node(problem, node, action)
  result ← Recursive-DLS (child, problem, limit – 1)
  if result = cutoff then cutoff_occurred ← true
  else if result ≠ failure then return result
if cutoff_occurred then return cutoff else return failure
```
Depth-Limited Search

- Limit DFS depth to l
- Still incomplete, if $l < d$
- Non-optimal if $l > d$
- Time complexity: $O(b^l)$
- Space complexity: $O(bl)$
Iterative–Deepening Search

- Run DEPTH–LIMTED–SEARCH iteratively with increasing depth limit

```plaintext
function Iterative-Deepening-Search (problem) returns a solution, or failure
for depth = 0 to ∞ do
    result = Depth-Limited-Search (problem, depth)
    if result ≠ cutoff then return result
```
Iterative–Deepening Search
Iterative–Deepening Search

- Complete?
- Optimal?
- Space complexity: $O(bd)$
- Time complexity

$$\sum_{i=0}^{d-1} (d-i)b^{i+1} = (d)b + (d-1)b^2 + ... + (1)b^d = O(b^d)$$

- Nodes at depth $d = \text{all nodes at depths 1 to } (d-1)$
- Iterative deepening best uninformed search when solution depth unknown
Bidirectional Search

- Search forward from initial state and backward from goal state
- Meet (hopefully) in the middle
- Each search has complexity $O(b^{d/2}) \ll O(b^d)$
- Replace goal test with frontier intersection
- How to reverse actions?
Uninformed Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>Yes(^1)</td>
<td>Yes(^1,2)</td>
<td>No</td>
<td>No</td>
<td>Yes(^1)</td>
<td>Yes(^1,4)</td>
</tr>
<tr>
<td>Time</td>
<td>O(b(^d))</td>
<td>O(b(^{1+[\lceil C*/\varepsilon \rceil]}))</td>
<td>O(b(^m))</td>
<td>O(b(^l))</td>
<td>O(b(^d))</td>
<td>O(b(^{d/2}))</td>
</tr>
<tr>
<td>Space</td>
<td>O(b(^d))</td>
<td>O(b(^{1+[\lceil C*/\varepsilon \rceil]}))</td>
<td>O(b(^m))</td>
<td>O(b(^l))</td>
<td>O(b(^d))</td>
<td>O(b(^{d/2}))</td>
</tr>
<tr>
<td>Optimal</td>
<td>Yes(^3)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes(^3)</td>
<td>Yes(^3,4)</td>
</tr>
</tbody>
</table>

1. Complete if b is finite
2. Complete if step costs ≥ \(\varepsilon > 0\)
3. Optimal if step costs all the same
4. If both directions use BFS
Informed (Heuristic) Search

- Guided by problem-specific knowledge other than the problem formulation
- Problem-specific knowledge usually expressed as heuristics
Heuristic Function

- **Heuristic function** $h(n)$ estimates cost of the path from state n to a goal state
 - E.g., 8-puzzle
 - Number of tiles out
 - Euclidean distance of each tile
 - City-block (Manhattan) distance of each tile
 - Non-negative function
 - For goal node $h(n) = 0$

- **Recall path cost** $g(n)$ is the cost so far from the initial state to state n

- **Evaluation function** $f(n) = g(n) + h(n)$ estimates the total cost of a solution going through state n
Best–First Search

- Choose next frontier node with smallest $f(n)$
- Depth–first search $=\text{Best–first search with}$
 $\quad f(n) = g(n) + h(n) = ?$
- Breadth–first search $=\text{Best–first search with}$
 $\quad f(n) = g(n) + h(n) = ?$
- Uniform–cost search $=\text{Best–first search with}$
 $\quad f(n) = g(n) + h(n) = ?$
Heuristic Search Strategies

- Greedy best-first search
- A* search
Greedy Best–First Search

- Best–first search with \(f(n) = h(n) \)
- Example: Route–finding problem
 - \(h(n) = \) straight–line distance from city \(n \) to goal city

Straight–line distances to Bucharest:

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Drobota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy Best–First Search Example: Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras
Greedy Best-First Search Example: Arad to Bucharest
Greedy Best-First Tree Search
Example: Iasi to Fagaras

SLD to Fagaras
Neamt 200
Iasi 220
Vaslui 230
Greedy Best–First Search

- Complete?
- Optimal?
- Time and space complexity: $O(b^m)$
 - $b =$ branching factor
 - $m =$ maximum depth of search space
 - Worst case
 - Good heuristic can substantially improve
A* Search

- $f(n) = g(n) + h(n)$
 - Estimated cost of solution through n
- Same as Uniform–Cost search using $f(n)$
- Complete and optimal under some constraints on $h(n)$
- Example: Route–finding using SLD

History: A* generalizes over algorithms A1 and A2, which were heuristic extensions to Dijkstra’s shortest path algorithm.
A* Search Example: Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea

Artificial Intelligence 54
A* Search Example: Arad to Bucharest (cont.)

(e) After expanding Fagaras

(f) After expanding Pitesti
Optimality of A*

- For A* tree search to be optimal, h(n) must be admissible
 - A heuristic function h(n) is admissible if it never over-estimates the cost of reaching the goal from n
 - E.g., Straight-line distance for route finding
 - E.g., Tiles out of place in 8-puzzle

- For A* graph search to be optimal, heuristic must further satisfy triangle inequality (also called consistent or monotonic)
 - A heuristic function h(n) satisfies the triangle inequality if h(n) ≤ cost(n,a,n’) + h(n’)

Artificial Intelligence 56
A* Search

- Complete and optimal?
 - Yes, if heuristic is admissible

- Time and space complexity?
 - Still $O(b^d)$ worst case
 - Space is typically the bottleneck

- A* is optimally efficient
 - No other algorithm using the same consistent heuristic is guaranteed to expand fewer nodes
Heuristics Revisited

- Why not use \(h(n) = 1 \)?
- How to measure quality of heuristic?
- **Effective branching factor** \(b^* \)
 - Assume A* generates \(N \) nodes to find solution at depth \(d \)
 - What branching factor needed for a uniform tree of depth \(d \) to include \(N+1 \) nodes?
 - \(N + 1 = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d \)
 - Ideally, \(b^* = 1 \)
 - E.g., \(N=52, \ d=5, \ b^*=1.92 \)
E.g., 8-puzzle

- $h_1 =$ tiles out of place
- $h_2 =$ sum of tiles’ city block distances

$h_1 = 8$

$h_2 = 3 + 1 + 2 + 2 + 3 + 2 + 2 + 3 = 18$

Solution cost = 26
Values averaged over 100 8-puzzle problems for each d

Note: \(b^*(h_2) \leq b^*(h_1) \)

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>A*(h₁)</th>
<th>A*(h₂)</th>
<th>IDS</th>
<th>A*(h₁)</th>
<th>A*(h₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>539</td>
<td>113</td>
<td>-</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1301</td>
<td>211</td>
<td>-</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>3056</td>
<td>363</td>
<td>-</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>7276</td>
<td>676</td>
<td>-</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>18094</td>
<td>1219</td>
<td>-</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>39135</td>
<td>1641</td>
<td>-</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Heuristic h_2 dominates h_1 if, for all nodes n, $h_2(n) \geq h_1(n)$

Implies A* using h_2 will typically generate fewer nodes than A* using h_1

“City block distance” dominates “misplaced tiles”

In general, want $h(n)$ to be consistent and close to true solution cost from node n
 - But still be fast to compute
Designing Heuristics

- Relaxed problems
 - $h(n) = \text{cost of solution to relaxed problem}$
 - E.g., 8-puzzle where you can swap tiles

- Subproblems
 - $h(n) = \text{cost of solution to subproblem}$
 - E.g., get half the tiles in correct position

- Learning from experience
 - Collect experience as (state, solution cost) pairs
 - Learn $h(n): \text{state} \rightarrow \text{solution cost}$
Summary

- Problem-solving agent
- Formulating problems
- Search
- Uninformed search (Iterative-Deepening)
- Informed (heuristic) search (A*)
- Admissible heuristics