
111111

Graph Algorithms:
Applications

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science

Washington State University

Applications

Depth-first search
Biconnectivity
Euler circuits
Strongly-connected components

2

Depth-First Search

3

Recursively visit every
vertex in the graph
Considers every edge in
the graph

Assumes undirected edge
(u,v) is in u’s and v’s
adjacency list

Visited flag prevents
infinite loops
Running time O(|V|+|E|)

DFS () ;; graph G=(V,E)
foreach v in V
if (! v.visited)
then Visit (v)

Visit (vertex v)
v.visited = true
foreach w adjacent to v
if (! w.visited)
then Visit (w)

A

DB

C

E

DFS Applications

Undirected graph
Test if graph is connected

Run DFS from any vertex and
then check if any vertices not
visited

Depth-first spanning tree
Add edge (v,w) to spanning
tree if w not yet visited
(minimum spanning tree?)
If graph not connected, then
depth-first spanning forest

4

A

DB

C

E

DFS Applications
Remembering the DFS traversal order is important
for many applications
Let the edges (v,w) added to the DF spanning tree
be directed
Add a directed back edge (dashed) if

w is already visited when considering edge (v,w), and
v is already visited when considering reverse edge (w,v)

5

A

DB

C

E

A

DB

C

E

Biconnectivity
A connected, undirected
graph is biconnected if the
graph is still connected after
removing any one vertex

I.e., when a “node” fails, there
is always an alternative route

If a graph is not biconnected,
the disconnecting vertices are
called articulation points

Critical points of interest in
many applications

6

Biconnected?
Articulation points?

DFS Applications: Finding
Articulation Points

From any vertex v, perform DFS and number vertices
as they are visited

Num(v) is the visit number

Let Low(v) = lowest-numbered vertex reachable from
v using 0 or more spanning tree edges and then at
most one back edge

Low(v) = minimum of
Num(v)
Lowest Num(w) among all back edges (v,w)
Lowest Low(w) among all tree edges (v,w)

Can compute Num(v) and Low(v) in O(|E|+|V|) time

7

DFS Applications: Finding
Articulation Points (Example)

8

Original Graph

Depth-first tree
starting at A with
Num/Low values:

DFS Applications: Finding
Articulation Points

Root is articulation point iff it has more
than one child
Any other vertex v is an articulation
point iff v has some child w such that
Low(w) ≥ Num(v)

I.e., is there a child w of v that cannot
reach a vertex visited before v?
If yes, then removing v will disconnect w
(and v is an articulation point)

9

DFS Applications: Finding
Articulation Points (Example)

10

Original Graph

Depth-first tree
starting at C with
Num/Low values:

DFS Applications: Finding
Articulation Points

High-level algorithm
Perform pre-order traversal to compute Num
Perform post-order traversal to compute Low
Perform another post-order traversal to detect
articulation points

Last two post-order traversals can be
combined
In fact, all three traversals can be combined
in one recursive algorithm

11

Implementation

12

13

Check for root
omitted.

14

Check for root
omitted.

Euler Circuits

Puzzle challenge
Can you draw a figure using a pen,
drawing each line exactly once, without
lifting the pen from the paper?
And, can you finish where you started?

15

Euler Circuits

Solved by Leonhard Euler
in 1736 using a graph
approach (DFS)

Also called an “Euler path”
or “Euler tour”
Marked the beginning of
graph theory

16

Euler Circuit Problem

Assign a vertex to each intersection in the
drawing
Add an undirected edge for each line
segment in the drawing
Find a path in the graph that traverses each
edge exactly once, and stops where it started

17

Euler Circuit Problem

Necessary and sufficient conditions
Graph must be connected
Each vertex must have an even degree

Graph with two odd-degree vertices can have
an Euler tour (not circuit)
Any other graph has no Euler tour or circuit

18

Euler Circuit Problem

Algorithm
Perform DFS from some vertex v until you
return to v along path p
If some part of graph not included,
perform DFS from first vertex v’ on p that
has an un-traversed edge (path p’)
Splice p’ into p
Continue until all edges traversed

19

Euler Circuit Example

20

Start at vertex 5.
Suppose DFS visits 5, 4, 10, 5.

Euler Circuit Example (cont.)

21

Graph remaining after 5, 4, 10, 5:

Start at vertex 4.
Suppose DFS visits 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4.
Splicing into previous path: 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.

Euler Circuit Example (cont.)

22

Graph remaining after 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5:

Start at vertex 3.
Suppose DFS visits 3, 2, 8, 9, 6, 3.
Splicing into previous path: 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.

Euler Circuit Example (cont.)

23

Graph remaining after 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5:

Start at vertex 9.
Suppose DFS visits 9, 12, 10, 9.
Splicing into previous path: 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.
No more un-traversed edges, so above path is an Euler circuit.

Euler Circuit Algorithm

Implementation details
Maintain circuit as a linked list to support
O(1) splicing
Maintain index on adjacency lists to avoid
repeated searches for un-traversed edges

Analysis
Each edge considered only once
Running time is O(|E|+|V|)

24

DFS on Directed Graphs

Same algorithm
Graph may be
connected, but not
strongly connected
Still want the DF
spanning forest to
retain information
about the search

25

DFS () ;; graph G=(V,E)
foreach v in V
if (! v.visited)
then Visit (v)

Visit (vertex v)
v.visited = true
foreach w adjacent to v
if (! w.visited)
then Visit (w)

A

DB

C

E

DF Spanning Forest

Three types of edges in DF spanning forest
Back edges linking a vertex to an ancestor
Forward edges linking a vertex to a descendant
Cross edges linking two unrelated vertices

26

A

DB

C

E

A

DB

C

E

Graph: DF Spanning Forest:

back

cross

DF Spanning Forest

27

Graph

DF Spanning Forest

back

back

cross

forward

(Note: DF Spanning Forests usually
drawn with children and new trees
added from left to right.)

DFS on Directed Graphs

Applications
Test if directed graph is acyclic

Has no back edges

Topological sort
Reverse post-order traversal of DF spanning
forest

28

Strongly-Connected
Components

A graph is strongly connected if every vertex can be
reached from every other vertex
A strongly-connected component of a graph is a
subgraph that is strongly connected
Would like to detect if a graph is strongly connected
Would like to identify strongly-connected components
of a graph
Can be used to identify weaknesses in a network
General approach: Perform two DFSs

29

Strongly-Connected
Components

Algorithm
Perform DFS on graph G

Number vertices according to a post-order traversal of
the DF spanning forest

Construct graph Gr by reversing all edges in G
Perform DFS on Gr

Always start a new DFS (initial call to Visit) at the
highest-numbered vertex

Each tree in resulting DF spanning forest is a
strongly-connected component

30

Strongly-Connected
Components

31

Graph G Graph Gr

DF Spanning Forest of Gr
Strongly-connected components:
{G}, {H,I,J}, {B,A,C,F}, {D}, {E}

Strongly-Connected
Components: Analysis

Correctness
If v and w are in a strongly-connected component
Then there is a path from v to w and a path from
w to v
Therefore, there will also be a path between v and
w in G and Gr

Running time
Two executions of DFS
O(|E|+|V|)

32

Summary

Graphs one of the most important data
structures
Studied for centuries
Numerous applications
Some of the hardest problems to solve
are graph problems

E.g., Hamiltonian (simple) cycle, Clique

33

	Graph Algorithms: Applications
	Applications
	Depth-First Search
	DFS Applications
	DFS Applications
	Biconnectivity
	DFS Applications: Finding Articulation Points
	DFS Applications: Finding Articulation Points (Example)
	DFS Applications: Finding Articulation Points
	DFS Applications: Finding Articulation Points (Example)
	DFS Applications: Finding Articulation Points
	Implementation
	Slide Number 13
	Slide Number 14
	Euler Circuits
	Euler Circuits
	Euler Circuit Problem
	Euler Circuit Problem
	Euler Circuit Problem
	Euler Circuit Example
	Euler Circuit Example (cont.)
	Euler Circuit Example (cont.)
	Euler Circuit Example (cont.)
	Euler Circuit Algorithm
	DFS on Directed Graphs
	DF Spanning Forest
	DF Spanning Forest
	DFS on Directed Graphs
	Strongly-Connected Components
	Strongly-Connected Components
	Strongly-Connected Components
	Strongly-Connected Components: Analysis
	Summary

