A Wavelet-Based Approach to Detect Shared Congestion

Min Sik Kim
The University of Texas at Austin

Coauthors: Taekhyun Kim, YongJune Shin, Simon S. Lam, Edward J. Powers
Cooperative Congestion Control

- Better utilization of network resources

- Applications
 - Congestion Manager, path diversity
 - Improving overlay network topology
 - end system multicast, overlay routing, ...

- Identify flows sharing a bottleneck!
Previous Approaches to Detect Shared Congestion

- **Loss-based techniques**
 - Work with lossy links, drop-tail queues
 - Do *not* work with low loss rate, RED

- **Delay-based techniques**
 - More robust than loss-based ones

- **Limitation**
 - Require a *common endpoint*
Model

Observations on queueing delay
- Congested link: large fluctuations
- Non-congested link: stable
Basic Technique

\[
XCOR_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \cdot \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}
\]
Shared Congestion

X_{src} \rightarrow X_{dst} \leftarrow X_{COR}

Y_{src} \rightarrow Y_{dst} \leftarrow Y_{COR}

Queueing delay vs. time

$X_{COR}_{XY} = 1$
Independent Congestion

X_{src} X_{dst}

Y_{src} Y_{dst}

$XCOR_{XY} \approx 0$
1st Limitation of Basic Technique

Queueing Delay Variation
2nd Limitation of Basic Technique

Synchronization Offset
Outline

- Introduction
- Basic technique
- Limitations of the basic technique
- DCW: Delay correlation with Wavelet denoising
- Experimental results
- Summary
Queueing Delay Characteristics

- **Heavy traffic**: 2%–10% loss
- **Light traffic**: no loss
Wavelet Transform

Measured data $x(t)$

Wavelet basis $\psi_{i,j}(t) = 2^{-i/2}\psi(2^{-i}t - j)$

Scale

Translation

Wavelet coefficient at scale i and translation j

$$X^i_j = \int_{-\infty}^{\infty} x(t)\psi_{i,j}(t) \, dt$$
Wavelet Denoising

- Soft thresholding
 - Threshold: T

\[
d_T(X) = \begin{cases}
X - T & \text{if } X \geq T \\
X + T & \text{if } X \leq T \\
0 & \text{if } |X| < T
\end{cases}
\]

\[
x(t) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} X_j^i \psi_{i,j}(t) \quad \rightarrow \quad \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} d_T(X_j^i) \psi_{i,j}(t)
\]
Minimizing Sync Offset Effects

- Error introduced by sync offset
 - $f(t)$: original data
 - $f(t-\Delta)$: shifted data due to sync offset
 - $f(t)-f(t-\Delta)$: error

- To minimize effects of sync offset:
 - $f(t)$ and ψ should match closely
 - $f(t)-f(t-\Delta)$ and ψ should not
Match Between Data Signal and Wavelet Basis

- Elliptic curve representation on time-frequency plane
 - C, D_1: Data Signal
 - C, D_2: Wavelet basis

- ISNR: similarity of elliptic curves

\[
\text{ISNR} = \frac{1}{T} \log_{10} \frac{C}{D_1 + D_2}
\]
Wavelet Basis Selection

- Differential ISNR
 - (ISNR between $f(t)$ and ψ) −
 (ISNR between $f(t)-f(t-\Delta)$ and ψ)

- Daubechies wavelets
 - Simple
 - Easy to implement
Evaluation

- Comparison with
 - MP: delay-based [Rubenstein, et al]
 - BP: loss-based [Harfoush, et al]

- Positive Ratio

 \[
 \frac{\text{# of answers indicating shared congestion}}{\text{# of experiments}}
 \]

 - 1: shared congestion
 - 0: no shared congestion
Common Source Topology

- X_{src} and Y_{src} are synchronized
- No synchronization offset
Common Source / Drop-Tail / Long-Lived TCP Traffic

- Shared: DCW > MP > BP
- Independent: MP > DCW ≈ BP
Common Source / Drop-Tail / On-Off CBR Traffic

- Slower convergence due to:
 - Delay on non-congested links → DCW, MP
 - Shorter loss runs → BP

- cf. Long-lived TCP

Diagram showing positive ratio over time for DCW shared, MP shared, BP shared, DCW independent, MP independent, BP independent.
Common Source / Drop-Tail / Short-Lived TCP Traffic

Even shorter loss runs \rightarrow BP fails.
Common Source / RED

☐ DCW and MP: similar as with drop-tail

☐ BP fails
Topology without Sync Point

☐ Synchronization offset > 0
Sync Offset Tolerance

- **Long-lived TCP**
 - DCW: 1–2 sec, MP: 30–70ms, BP: < 10ms

- **On-Off CBR**

- **Short-lived TCP**

- **DCW**: 1–2 sec, **MP**: 30–70ms, **BP**: < 10ms
Internet Experiment

- Topology

- 10 seconds to converge

Graph:

- Node K
- Node T
- Node H
- Node A1
- Node A2
- Node A3

Graph with timelines for Positive Ratio:

- Shared line
- Non-shared line

Timeline:

- X-axis: Time (sec) from 0.1 to 10
- Y-axis: Positive Ratio from 0 to 1

Graph indicates that it takes 10 seconds for the system to converge.
Summary

- Proposed technique: DCW
 - Delay Correlation with Wavelet denoising
- As fast and accurate as previous techniques (with a common endpoint)
- Applicable to *any 2 Internet paths*
- Basic primitive for overlay topology improvement