Washington State University
School of EECS
Electrical Engineering Course Assessment Report

Course Number EE 352
Course Title Electrical Engineering Laboratory
Semester Offered Spring 2006
Instructor Hanshaw
10th Day Enrollment Number Completing Successfully (C grade or better) 25

I. Assessment Outcomes from the Course Syllabus

✓ (A) Ability to apply knowledge of mathematics, science and engineering.
✓ (B) Ability to design and conduct experiments as well as analyze and interpret data.
✓ (C) Ability to design a system, component, or process to meet desired needs.
✓ (D) Ability to function on multidisciplinary teams.
☐ (E) Ability to identify, formulate, and solve engineering problems.
☐ (F) An understanding of professional and ethical responsibility.
✓ (G) Ability to communicate effectively in written and oral formats.
☐ (H) A broad education necessary to understand the impact of engineering solutions in global, economic, and societal context.
☐ (I) Recognize the need for, and have the ability to engage in life long learning.
✓ (J) Have a broad education and knowledge of contemporary issues.
✓ (K) Ability to use techniques, skills and modern engineering tools necessary for engineering practices.

II. List of Course Topics from the Course Syllabus

1. Laboratory and equipment familiarization
2. Operational Amplifiers – characteristics and filters
3. Diode characteristics, PSPICE, and circuits
4. BJT characteristics, model and circuits
5. MOSFET characteristics and circuits
6. Circuit analysis: steady state and transient behavior of RLC networks, frequency response
7. Design project
III. Course Assessment Summary Table: one row of the table should be devoted to each of the checked outcomes in part I.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Topics</th>
<th>Specific Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Ability to apply knowledge of mathematics, science and engineering.</td>
<td>1-7</td>
<td>Laboratory assignments, pre-labs, and final design project require application of math and science concepts.</td>
</tr>
<tr>
<td>(B) Ability to design and conduct experiments as well as analyze and interpret data.</td>
<td>2-7</td>
<td>Several lab assignments require simple design projects; final design project requires an in-depth, top-down design based on specifications provided by instructor.</td>
</tr>
<tr>
<td>(C) Ability to design a system, component, or process to meet desired needs.</td>
<td>7</td>
<td>Final design project requires design of temperature measurement system and temperature controller.</td>
</tr>
<tr>
<td>(D) Ability to function on multidisciplinary teams.</td>
<td>7</td>
<td>Final design project required knowledge of thermal subsystem.</td>
</tr>
<tr>
<td>(G) Ability to communicate effectively in written and oral formats.</td>
<td>2-7</td>
<td>Most laboratory assignments required demonstrations to TAs and written reports. Final project required a short (10-15 minute) informal presentation and a formal written project report.</td>
</tr>
<tr>
<td>(J) Have a broad education and knowledge of contemporary issues.</td>
<td>2-7</td>
<td>Students are exposed to a wide range of electronics-related topics; final design project required design of system to implement control temperature.</td>
</tr>
<tr>
<td>(K) Ability to use techniques, skills and modern engineering tools necessary for engineering practices.</td>
<td>2-7</td>
<td>Most laboratory assignments and especially the final project require use of typical laboratory bench equipment (oscilloscope, function generator, etc.) and computer analysis tools (PSPICE, MATLAB).</td>
</tr>
</tbody>
</table>
IV. Using the table as a guide, for each outcome summarize your evaluation of the students’ achievement of that outcome; cite student performance on the identified measures as evidence to support your conclusions.

Successful completion of all outcomes was evaluated based primarily on the final class project; individual laboratory assignments performed throughout the semester primarily functioned as vehicles to introduce specific topics which were necessary for successful completion of the final design project. The project this semester consisted of design and implementation of a temperature control system. A Peltier junction was used to provide a heat input to a heat sink; students controlled the temperature of the heat sink by controlling the current applied to the Peltier junction. Specifically, the students were required to design and implement the following subsystems:

1. Temperature measurement system – the students were required to use a thermistor as a basis for a system which would output a DC voltage which was approximately proportional to the temperature of the heat sink.
2. Controller – the students were required to control the temperature of the heat sink. The controller input was the difference between a desired and actual temperature, and the controller output was the current applied to the Peltier junction.

Nominally, students worked in groups of two during the design project.

Results:

The previously listed course criteria and the way in which they are addressed in the final project are discussed below.

(A) An ability to apply knowledge of mathematics, science and engineering:

Overall, the majority of students displayed an adequate ability to apply concepts learned during the course. Some students, however, had difficulty applying concepts learned in pre-requisite and co-requisite courses.

(B) Ability to design and conduct experiments as well as analyze and interpret data:

All lab assignments required students to conduct experiments, gather, and interpret data. Several lab assignments required students to design circuits to perform a specified task; generally, in the laboratory assignments, the design objectives were closely related to current course material. The final project was a more ambitious design project, requiring students to assimilate information from various parts of the course and other courses that they had taken previously or were taking concurrently.

As expected, few students had difficulty with experiments with instructions which outlined step-by-step approaches to building a circuit and acquiring data. Design tasks contained within individual lab assignments gave the students only slightly more
difficulty, probably because of the focused nature of the problem. As expected, the design project, though not difficult, gave the students the most difficulty. This was primarily due to the fact that the students needed to identify and formulate a problem in a relatively unfamiliar context, and that the project required students to synthesize material learned throughout the course. Students were, however, able to solve the problem readily once some “hints” were provided as to how to relate the problem to concepts learned previously in the course. The fact that the design project introduced the necessity of analyzing a non-electrical component gave the students some difficulty, though the difficulty level was more perceived rather than actual.

(C) Ability to design a system, component, or process to meet desired needs.

The final project required students to design a system to control the temperature of a heat sink by controlling the current applied to a Peltier junction. All students were able to design and construct a functioning circuit which met requirements, though students displayed varying levels of ability in their overall design process and analysis methods.

(D) Ability to function on multidisciplinary teams

Students in the class are all electrical engineering students. The multidisciplinary aspect of the class was incorporated in the final design project. The project included a significant heat transfer component. The instructor acted as mechanical engineer for all groups; he performed tasks relative to modeling of the heat transfer aspects of the problems and performed in a role which would typically be held by a mechanical engineer in a multidisciplinary team.

(G) Ability to communicate effectively in written and oral formats

Individual lab assignments required submission of a lab report; this resulted in submission of seven semi-formal reports over the course of the semester. These lab reports were not stringently graded, the overall idea was to give students some practice in organizing their results prior to submission of the final, formal design project report. Grading criteria for these reports were explicitly provided. In general, performance on the individual lab reports was good.

Performance on the final design project report was mixed. Some students did an outstanding job of organizing and presenting their results, others displayed extremely poor writing abilities.

The final design project submission also required students to informally present and demonstrate operation of their circuit to the instructor. Most students demonstrated adequate communication skills, at least in this informal setting.
(J) Have a broad education and knowledge of contemporary issues

The final design project introduced students to some basic issues in the field of controls. A brief introduction to feedback control was provided, as were the basics of PID control. The field of system identification was also introduced obliquely, as students were encouraged to acquire step response data for their systems in order to identify the appropriate parameters with which to model their system.

Although both of these topics are somewhat beyond the scope of the course, most students were able to grasp the salient points readily and use them in their design approach.

K) Ability to use techniques, skills and modern engineering tools necessary for engineering practices

The final project required a significant level of analysis, including simulation of their overall closed-loop control system. Students were allowed to choose either MatLab or PSPICE to simulate their systems. Students almost invariably chose MatLab to simulate the overall system, probably because of the inclusion of the thermal system components in the overall system. Some students used PSPICE to simulate their electrical subsystems, but resorted to MatLab to simulate the overall system.

A number of students used Simulink to simulate the system’s performance, in order to readily analyze saturation effects in the system. This was very encouraging, since Simulink was not an analysis approach recommended a priori by the instructor. Students were apparently able to recognize the nonlinearities and attempt to incorporate them in their analysis.

V. Qualitative Assessment of Student Performance: using the arguments above and other data support the claim that students who completed this course with a grade of C or better have achieved each of the intended outcomes of this course.

Overall, the students did very well on the lab assignments and final project. The average score on the laboratory assignments was approximately 81%, and the average score on the final project was approximately 86.8%. This indicates adequate performance relative to the ABET criteria listed above.

The students’ proficiency with MatLab and PSPICE was, in many cases, lower than expected.
VI. Concerns: state any concerns you may hold about this class – were the students adequately prepared coming into it? Are there topics or outcomes where (some) students were weak after completing the course? Other concerns? Were there any comments on students’ course evaluations that should be addressed in future instances of the course? This section is very important for improving our program: it provides critical input to the curriculum committee for identifying areas requiring attention.

Students were, in general, adequately prepared for the class before entering it. Some deficiencies were noted in their abilities to use engineering analysis tools such as MatLab and PSPICE. Many of the skills associated with basic use of these tools were overcome during this class.

Many students had very poor writing abilities when coming into the class. For the most part, these skills were enhanced significantly during the class, but a number of students still displayed inadequate writing capabilities in their final project reports.

Students need more exposure to design problems in this class and other concurrent classes.

This course’s ability to satisfy ABET criteria (D) – ability to function in multidisciplinary teams – is marginal at best. Typically only electrical engineering students take this class.

Signature __________________________ Date: ____________________