
Chapter 5

Scaling FDTD Simulations to Any

Frequency

5.1 Introduction

The FDTD method requires the discretization of time and space. Samples in time are ∆t apart

whereas, in simulations with one spatial dimension, samples in space are ∆x apart. It thus appears

that one must specify ∆t and ∆x in order to perform a simulation. However, as shown in Sec. 3.3,

it is possible to write the coefficients ∆t/ǫ∆x and ∆t/µ∆x in terms of the material parameters

and the Courant number (ref. (3.19) and (3.20)). Since the Courant number contains the ratio of

the temporal step to the spatial step, it allows one to avoid explicitly stating a definite temporal

or spatial step—all that matters is their ratio. This chapter continues to examine ways in which

FDTD simulations can be treated as generic simulations that can be scaled to any size/frequency.

As will be shown, the important factors which dictate the behavior of the fields in a simulation

are the Courant number and the points per wavelength for any given frequency. We conclude the

chapter by considering how one can obtain the transmission coefficient for a planar interface from

a FDTD simulation.

5.2 Sources

5.2.1 Gaussian Pulse

In the previous chapter the source function, whether hardwired, additive, or incorporated in a TFSF

formulation, was always a Gaussian. In the continuous world this function can be expressed as

fg(t) = e
−
(

t−dg

wg

)2

(5.1)

where dg is the temporal delay and wg is a pulse-width parameter. The Gaussian has its peak value

at t = dg (when the exponent is zero) and has a value of e−1 when t = dg ± wg. Since (5.1) is

only a function of time, i.e., a function of q∆t in the discretized world, it again appears as if the

temporal step ∆t must be given explicitly. However, if one specifies the delay and pulse width in
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116 CHAPTER 5. SCALING FDTD SIMULATIONS TO ANY FREQUENCY

terms of temporal steps, the term ∆t appears in both the numerator and the denominator of the

exponent. For example, in the last chapter dg was 30∆t and wg was 10∆t so the source function

could be written

fg(q∆t) = fg[q] = e−(
q−30

10 )
2

. (5.2)

Note that ∆t does not appear on the right-hand side.

The discretized version of a function f(q∆t) will be written f [q], i.e., the temporal step will

be dropped from the argument since it does not appear explicitly in the expression for the function

itself. The key to being able to discard ∆t from the source function was the fact that the source

parameters were expressed in terms of the number of temporal steps.

5.2.2 Harmonic Sources

For a harmonic source, such as

fh(t) = cos(ωt), (5.3)

there is no explicit numerator and denominator in the argument. Replacing t with q∆t it again

appears as if the temporal step must be given explicitly. However, keep in mind that with electro-

magnetic fields there is an explicit relationship between frequency and wavelength. For a plane

wave propagating in free space, the wavelength λ and frequency f are related by

fλ = c ⇒ f =
c

λ
. (5.4)

Thus the argument ωt (i.e., 2πft) can also be written as

ωt =
2πc

λ
t. (5.5)

For a given frequency, the wavelength is a fixed length. Being a length, it can be expressed in terms

of the spatial step, i.e.,

λ = Nλ∆x (5.6)

where Nλ is the number of points per wavelength. This does not need to be an integer.

By relating frequency to wavelength and the wavelength to Nλ, the discretized version of the

harmonic function can be written

fh(q∆t) = cos

(

2πc

Nλ∆x

q∆t

)

= cos

(

2π

Nλ

c∆t

∆x

q

)

, (5.7)

or, simply,

fh[q] = cos

(

2πSc

Nλ

q

)

. (5.8)

The expression on the right now contains the Courant number and the parameter Nλ. In this form

one does not need to state an explicit value for the temporal step. Rather, one specifies the Courant

number Sc and the number of spatial steps per wavelength Nλ. Note that Nλ we will always be

defined in terms of the number of spatial steps per the wavelength in free space. Furthermore, the

wavelength is the one in the continuous world—we will see later that the wavelength in the FDTD

grid is not always the same.
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The period for a harmonic function is the inverse of the frequency

T =
1

f
=

λ

c
=

Nλ∆x

c
. (5.9)

The number of time steps in a period is thus given by

T

∆t

=
Nλ∆x

c∆t

=
Nλ

Sc

. (5.10)

A harmonic wave traveling in the positive x direction is given by

fh(x, t) = cos(ωt− kx) = cos

(

ω

(

t− k

ω
x

))

. (5.11)

Since k = ω
√
µ0µrǫ0ǫr = ω

√
µrǫr/c, the argument can be written

ω

(

t− k

ω
x

)

= ω

(

t−
√
µrǫr

c
x

)

. (5.12)

Expressing all quantities in terms of the discrete values which pertain in the FDTD grid yields

ω

(

t−
√
µrǫr

c
x

)

=
2πc

Nλ∆x

(

q∆t −
√
µrǫr

c
m∆x

)

=
2π

Nλ

(Scq −
√
µrǫrm). (5.13)

Therefore the discretized form of (5.11) is given by

fh[m, q] = cos

(

2π

Nλ

(Scq −
√
µrǫrm)

)

. (5.14)

This equation could now be used as the source in a total-field/scattered-field implementation.

(However, note that when the temporal and spatial indices are zero this source has a value of

unity. If that is the initial “turn-on” value of the source, that may cause artifacts which are unde-

sirable. This will be considered further when dispersion is discussed. It is generally better to ramp

the source up gradually. A simple improvement is offered by using a sine function instead of a

cosine since sine is initially zero.)

5.2.3 The Ricker Wavelet

One of the features of the FDTD technique is that it allows the modeling of a broad range of fre-

quencies using a single simulation. Therefore it is generally advantageous to use pulsed sources—

which can introduce a wide spectrum of frequencies—rather than a harmonic source. The Gaussian

pulse is potentially an acceptable source except that it contains a dc component. In fact, for a Gaus-

sian pulse dc is the frequency with the greatest energy. Generally one would not use the FDTD

technique to model dc fields. Sources with dc components also have the possibility of introducing

artifacts which are not physical (e.g., charges which sit in the grid). Therefore we consider a dif-

ferent pulsed source which has no dc component and which can have its most energetic frequency

set to whatever frequency (or discretization) is desired.
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The Ricker wavelet is equivalent to the second derivative of a Gaussian; it is simple to imple-

ment; it has no dc component; and, its spectral content is fixed by a single parameter. The Ricker

wavelet is often written

fr(t) =
(

1− 2
{

πfP [t− dr]
}2
)

exp
(

−
{

πfP [t− dr]
}2
)

(5.15)

where fP is the “peak frequency” and dr is the temporal delay. As will be more clear when the

spectral representation of the function is shown below, the peak frequency is the frequency with

the greatest spectral content.

The delay dr can be set to any desired amount, but it is convenient to express it as a multiple of

1/fP , i.e.,

dr = Md
1

fP
(5.16)

where Md is the delay multiple (which need not be an integer). An FDTD simulation is typically

assumed to start at t = 0, but fr(t) is not zero for t < 0—rather fr(t) asymptotically approaches

zero for large and small values of the argument, but never actually reaches zero (other than at

two discrete zero-crossings). However, with a delay of dr = 1/fP (i.e., Md = 1), |fr(t < 0)| is

bound by 0.001, which is small compared to the peak value of unity. Thus, the transient caused by

“switching on” fr(t) at t = 0 is relatively small with this amount of delay. Said another way, since

the magnitude of fr(t) is small for t < 0, these values can be approximated by assuming they are

zero. For situations that may demand a smoother transition (i.e., a smaller initial turn-on value),

the bound on |fr(t < 0)| can be made arbitrarily small by increasing dr. For example, with a delay

multiple Md of 2, |fr(t < 0)| is bound by 10−15.

The Fourier transform of (5.15) is

Fr(ω) = − 2

fP
√
π

(

ω

2πfP

)2

exp

(

−jdrω −
[

ω

2πfP

]2
)

. (5.17)

Note that the delay dr only appears as the imaginary part of the exponent. Thus it affects only the

phase of Fr(ω), not the magnitude.

The functions fr(t) and |Fr(ω)| are shown in Fig. 5.1. For the sake of illustration, fP is arbi-

trarily chosen to be 1 Hz and the delay is 1 s. Different values of fP change the horizontal scale but

they do not change the general shape of the curve. To obtain unit amplitude at the peak frequency,

Fr(ω) has been scaled by fP e
√
π/2.

The peak frequency fP has a corresponding wavelength λP . This wavelength can be expressed

in terms of the spatial step such that λP = NP∆x, where NP does not need to be an integer. Thus

fP =
c

λP

=
c

NP∆x

(5.18)

The Courant number Sc is c∆t/∆x so the spatial step can be expressed as ∆x = c∆t/Sc. Using

this in (5.18) yields

fP =
Sc

NP∆t

. (5.19)

The delay can thus be expressed as

dr = Md
1

fP
= Md

NP∆t

Sc

. (5.20)
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Figure 5.1: Normalized spectrum of the Ricker wavelet with fP = 1 Hz. The corresponding

temporal form fr(t) is shown in the inset box where a delay of 1 s has been assumed. For other

values of fP , the horizontal axis in the time domain is scaled by 1/fP . For example, if fP were 1
MHz, the peak would occur at 1 µs rather than at 1 s. In the spectral domain, the horizontal axis is

directly scaled by fP so that if fP were 1 MHz, the peak would occur at 1 MHz.

Letting time t be q∆t and expressing fP and dr as in (5.19) and (5.20), the discrete form of (5.15)

can be written as

fr[q] =

(

1− 2π2

[

Scq

NP

−Md

]2
)

exp

(

−π2

[

Scq

NP

−Md

]2
)

. (5.21)

Note that the parameters that specify fr[q] are the Courant number Sc, the points per wavelength

at the peak frequency NP , and the delay multiple Md—there is no ∆t in (5.21). This function

appears to be independent of the temporal and spatial steps, but it does depend on their ratio via

the Courant number Sc.

Equation (5.15) gives the Ricker wavelet as a function of only time. However, as was discussed

in Sec. 3.10, when implementing a total-field/scattered-field boundary, it is necessary to parame-

terize an incident field in both time and space. As shown in Sec. 2.16, one can always obtain a

traveling plane-wave solution to the wave equation simply by tweaking the argument of any func-

tion that is twice differentiable. Given the Ricker wavelet fr(t), fr(t ± x/c) is a solution to the

wave equation where c is the speed of propagation. The plus sign corresponds to a wave traveling

in the negative x direction and the negative sign corresponds to a wave traveling in the positive

x direction. (Although only 1D propagation will be considered here, this type of tweaking can

also be done in 2D and 3D.) Therefore, a traveling Ricker wavelet can be constructed by replacing

the argument t in (5.15) with t ± x/c. The value of the function now depends on both time and
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location, i.e., it is a function of two variables:

fr(t± x/c) = fr(x, t),

=

(

1− 2π2f 2
P

[

t± x

c
− dr

]2
)

exp

(

−π2f 2
P

[

t± x

c
− dr

]2
)

. (5.22)

As before, (5.20) and (5.19) can be used to rewrite dr and fP in terms of the Courant number, the

points per wavelength at the peak frequency, the temporal step, and the delay multiple. Replacing

t with q∆t, x with m∆x, and employing the identity x/c = m∆x/c = m∆t/Sc, yields

fr[m, q] =

(

1− 2π2

[

Scq ±m

NP

−Md

]2
)

exp

(

−π2

[

Scq ±m

NP

−Md

]2
)

. (5.23)

This gives the value of the Ricker wavelet at temporal index q and spatial index m. Note that when

m is zero (5.23) reduces to (5.21).

5.3 Mapping Frequencies to Discrete Fourier Transforms

Assume the field was recorded during an FDTD simulation and then the recorded field was trans-

formed to the frequency domain via a discrete Fourier transform. The discrete transform will yield

a set of complex numbers that represents the amplitude of discrete spectral components. The ques-

tion naturally arises: what is the correspondence between the indices of the transformed set and

the actual frequency?

In any simulation, the highest frequency fmax that can exist is the inverse of the shortest period

that can exist. In a discrete simulation one must have at least two samples per period. Since the

time samples are ∆t apart, the shortest possible period is 2∆t. Therefore

fmax =
1

2∆t

. (5.24)

The change in frequency from one discrete frequency to the next is the spectral resolution ∆f . The

spectral resolution is dictated by the total number of samples which we will call NT (an integer

value). In general NT would correspond to the number of time steps in an FDTD simulation. The

spectral resolution is given by

∆f =
fmax

NT/2
. (5.25)

The factor of two is a consequence of the fact that there are both positive and negative frequencies.

Thus one can think of the entire spectrum as ranging from −fmax to fmax, i.e., an interval of

2fmax which is then divided by NT . Alternatively, to find ∆f we can divide the maximum positive

frequency by NT/2 as done in (5.25). Plugging (5.24) into (5.25) yields

∆f =
1

NT∆t

. (5.26)

In Sec. 5.2.2 it was shown that a given frequency f could be written c/λ = c/Nλ∆x where Nλ

is the number of points per wavelength (for the free-space wavelength). After transforming to the
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spectral domain, this frequency would have a corresponding index given by

Nfreq =
f

∆f

=
NT c∆t

Nλ∆x

=
NT

Nλ

c∆t

∆x

=
NT

Nλ

Sc. (5.27)

Thus, the spectral index is dictated by the duration of the simulation NT , the Courant number Sc,

and the points per wavelength Nλ.

Note that in practice different software packages may index things differently. The most typical

practice is to have the first element in the spectral array correspond to dc, the next NT/2 elements

correspond to the positive frequencies, and then the next (NT/2) − 1 elements correspond to the

negative frequencies (which will always be the complex conjugates of the positive frequencies in

any real FDTD simulation). The negative frequencies typically are stored from highest frequency

to lowest (i.e., fastest varying to slowest) so that the last value in the array corresponds to the

negative frequency closest to dc (−∆f ). Additionally, note that in (5.27) dc corresponds to an

Nfreq of zero (since Nλ is infinity for dc). However when using Matlab the dc term in the array

obtained using the fft() command has an index of one. The first element in the array has an

index of one—there is no “zero” element in Matlab arrays. So, one must understand and keep in

mind the implementation details for a given software package.

From (5.19), the most energetic frequency in a Ricker wavelet can be written

fP =
Sc

NP∆t

. (5.28)

The spectral index corresponding to this is given by

Nfreq =
fP
∆f

=
NT

NP

Sc. (5.29)

This is identical to (5.27) except the generic value Nλ has been replaced by NP which is the points

per wavelength at the peak frequency.

A discrete Fourier transform yields an array of numbers which inherently has integer indices.

The array elements correspond to discrete frequencies at multiples of ∆f . However, Nfreq given

in (5.27) need not be thought of as an integer value. As an example, assume there were 65536

times steps in a simulation in which the Courant number was 1/
√
2. Further assume that we are

interested in the frequency which corresponds to 30 points per wavelength (Nλ = 30). In this case

Nfreq equals 65536/(30
√
2) = 1544.6983 · · · . There is no reason why one cannot think in terms of

this particular frequency. However, this frequency is not directly available from a discrete Fourier

transform of the temporal data since the transform will only have integer values of Nfreq. For this

simulation an Nfreq of 1544 corresponds 30.0136 · · · points per wavelength while an Nfreq of 1545
corresponds 29.9941 · · · points per wavelength. One can interpolate between these values if the

need is to measure the spectral output right at 30 points per wavelength.

5.4 Running Discrete Fourier Transform (DFT)

If one calculates the complete Fourier transform of the temporal data of length NT points, one

obtains information about the signal at NT distinct frequencies (if one counts both positive and
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negative frequencies). However, much of that spectral information is of little practical use. Be-

cause of the dispersion error inherent in the FDTD method and other numerical artifacts, one does

not trust results which correspond to frequencies with too coarse a discretization. When taking

the complete Fourier transform one often relies upon a separate software package such as Mathe-

matica, Matlab, or perhaps the FFTw routines (a suite of very good C routines to perform discrete

Fourier transforms). However, if one is only interested in obtaining spectral information at a few

frequencies, it is quite simple to implement a discrete Fourier transform (DFT) which can be in-

corporated directly into the FDTD code. The DFT can be performed as the simulation progresses

and hence the temporal data does not have to be recorded. This section outlines the steps involved

in computing such a “running DFT.”

Let us consider a discrete signal g[q] which is, at least in theory, periodic with a period of NT

so that g[q] = g[q+NT ] (in practice only one period of the signal is of interest and this corresponds

to the data obtained from an FDTD simulation). The discrete Fourier series representation of this

signal is

g[q] =
∑

k=〈NT 〉

ake
jk(2π/NT )q (5.30)

where k is an integer index and

ak =
1

NT

∑

q=〈NT 〉

g[q]e−jk(2π/NT )q (5.31)

The summations are taken over NT consecutive points—we do not care which ones, but in practice

for our FDTD simulations ak would be calculated with q ranging from 0 to NT − 1 (the term

below the summation symbols in (5.30) and (5.31) indicates the summations are done over NT

consecutive integers, but the actual start and stop points do not matter). The term ak gives the

spectral content at the frequency f = k∆f = k/(NT∆t). Note that ak is obtained simply by

taking the sum of the sequence g[q] weighted by an exponential.

The exponential in (5.31) can be written in terms of real and imaginary parts, i.e.,

ℜ[ak] =
1

NT

NT−1
∑

q=0

g[q] cos

(

2πk

NT

q

)

, (5.32)

ℑ[ak] = − 1

NT − 1

NT
∑

q=0

g[q] sin

(

2πk

NT

q

)

, (5.33)

where ℜ[] indicates the real part and ℑ[] indicates the imaginary part. In practice, g[q] would be a

particular field component and these calculations would be performed concurrently with the time-

stepping. The value of ℜ[ak] would be initialized to zero. Then, at each time step ℜ[ak] would be

set equal to its previous value plus the current value of g[q] cos(2πkq/NT ), i.e., we would perform

a running sum. Once the time-stepping has completed, the stored value of ℜ[ak] would be divided

by NT . A similar procedure is followed for ℑ[ak] where the only difference is that the value used in

the running sum is −g[q] sin(2πkq/NT ). Note that the factor 2πk/NT is a constant for a particular

frequency, i.e., for a particular k.

Similar to the example at the end of the previous section, let us consider how we would extract

information at a few specific discretizations. Assume that NT = 8192 and Sc = 1/
√
2. Further



5.5. REAL SIGNALS AND DFT’S 123

assume we want to find the spectral content of a particular field for discretizations of Nλ = 20, 30,

40, and 50 points per wavelength. Plugging these values into (5.27) yields corresponding spectral

indices (i.e., Nfreq or index k in (5.31)) of

Nλ = 20 ⇒ k = 289.631,

Nλ = 30 ⇒ k = 193.087,

Nλ = 40 ⇒ k = 144.815,

Nλ = 50 ⇒ k = 115.852.

The spectral index must be an integer. Therefore, rounding k to the nearest integer and solving for

the corresponding Nλ we find

k = 290 ⇒ Nλ = 19.9745,

k = 193 ⇒ Nλ = 30.0136,

k = 145 ⇒ Nλ = 39.9491,

k = 116 ⇒ Nλ = 49.9364.

Note that these values of Nλ differ slightly from the “desired” values. Assume that we are modeling

an object with some characteristic dimension of twenty cells, i.e., a = 20∆x. Given the initial list

of integer Nλ values, we could say that we were interested in finding the field at frequencies with

corresponding wavelengths of a, 3
2
a, 2a, and 5

2
a. However, using the non-integer Nλ’s that are

listed above, the values we obtain correspond to 0.99877a, 1.500678a, 1.997455a, and 2.496818a.

As long as one is aware of what is actually being calculated, this should not be a problem. Of

course, as mentioned previously, if we want to get closer to the desired values, we can interpolate

between the two spectral indices which bracket the desired value.

5.5 Real Signals and DFT’s

In nearly all FDTD simulations we are concerned with real signals, i.e., g[q] in (5.30) and (5.31) are

real. For a given spectral index k (which can be thought of as a frequency), the spectral coefficient

ak is as given in (5.31). Now, consider an index of NT − k. In this case the value of aNT−k is given

by

aNT−k = =
1

NT

∑

q=〈NT 〉

g[q]e−j(NT−k)(2π/NT )q,

=
1

NT

∑

q=〈NT 〉

g[q]e−j2πejk(2π/NT )q,

=
1

NT

∑

q=〈NT 〉

g[q]ejk(2π/NT )q,

aNT−k = a∗k, (5.34)

where a∗k is the complex conjugate of ak. Thus, for real signals, the calculation of one value of ak
actually provides the value of two coefficients: the one for index k and the one for index NT − k.
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Another important thing to note is that, similar to the continuous Fourier transform where there

are positive and negative frequencies, with the discrete Fourier transform there are also pairs of

frequencies that should typically be considered together. Let us assume that index k goes from

0 to NT − 1. The k = 0 frequency is dc. Assuming NT is even, k = NT/2 is the Nyquist

frequency where the spectral basis function exp(jπq) alternates between positive and negative one

at each successive time-step. Both a0 and aNT /2 will be real. All other spectral components can be

complex, but for real signals it will always be true that aNT−k = a∗k.

If we are interested in the amplitude of a spectral component at a frequency of k, we really

need to consider the contribution from both k and NT −k since the oscillation at both these indices

is at the same frequency. Let us assume we are interested in reconstructing just the k′th frequency

of a signal. The spectral components would be given in the time domain by

f [q] = ak′e
jk′(2π/NT )q + aNT−k′e

j(NT−k′)(2π/NT )q

= ak′e
jk′(2π/NT )q + a∗k′e

j2πe−jk′(2π/NT )q

= 2ℜ[ak′ ] cos
(

2k′π

NT

q

)

− 2ℑ[ak′ ] sin
(

2k′π

NT

q

)

= 2|ak′ | cos
(

2k′π

NT

q + tan−1

(ℑ[ak′ ]
ℜ[ak′ ]

))

(5.35)

Thus, importantly, the amplitude of this harmonic function is given by 2|ak′ | (and not merely |ak′ |).
Let us explore this further by considering the x component of an electric field at some arbitrary

point that is given by

E[q] = Ex0 cos[ωk′q + θe]âx,

= ℜ[Ex0e
jθeejωk′q]âx,

=
1

2
[Êx0e

jωk′q + Ê∗
x0e

−jωk′q]âx, (5.36)

where

ωk′ = k′ 2π

NT

, (5.37)

Êx0 = Ex0e
jθe , (5.38)

and k′ is some arbitrary integer constant. Plugging (5.36) into (5.31) and dropping the unit vector

yields

ak =
1

2NT

∑

q=〈NT 〉

[Êx0e
jωk′q + Ê∗

x0e
−jωk′q]e−jωkq,

=
1

2NT

∑

q=〈NT 〉

[Êx0e
j(ωk′−ωk)q + Ê∗

x0e
−j(ωk′+ωk)q],

=
1

2NT

∑

q=〈NT 〉

[Êx0e
j(k′−k)(2π/NT )q + Ê∗

x0e
−j(k′+k)(2π/NT )q]. (5.39)
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Without loss of generality, let us now assume q varies between 0 and NT − 1 while k and k′ are

restricted to be between 0 and NT − 1. Noting the following relationship for geometric series

N−1
∑

q=0

xq = 1 + x+ x2 + · · ·+ xN−1 =
1− xN

1− x
(5.40)

we can express the sum of the first exponential expression in (5.39) as

NT−1
∑

q=0

ej(k
′−k)(2π/NT )q =

1− ej(k
′−k)2π

1− ej(k′−k)(2π/NT )
. (5.41)

Since k and k′ are integers, the second term in the numerator on the right side, exp(j(k′ − k)2π),
equals 1 for all values of k and k′ and thus this numerator is always zero. Provided k 6= k′,

the denominator is non-zero and we conclude that for k 6= k′ the sum is zero. For k = k′, the

denominator is also zero and hence the expression on the right does not provide a convenient way

to determine the value of the sum. However, when k = k′ the terms being summed are simply

1 for all values of q. Since there are NT terms, the sum is NT . Given this, we can write the

“orthogonality relationship” for the exponentials

NT−1
∑

q=0

ej(k
′−k)(2π/NT )q =

{

0 k′ 6= k
NT k′ = k

(5.42)

Using this orthogonality relationship in (5.39), we find that for the harmonic signal given in (5.36),

one of the non-zero spectral coefficients is

ak′ =
1

2
Êx0. (5.43)

Conversely, expressing the (complex) amplitude in terms of the spectral coefficient from the DFT,

we have

Êx0 = 2ak′ . (5.44)

For the sake of completeness, now consider the sum of the other complex exponential term in

(5.39). Here the orthogonality relationship is

NT−1
∑

q=0

e−j(k′+k)(2π/NT )q =

{

0 k 6= NT − k′

NT k = NT − k′ (5.45)

Using this in (5.39) tells us

aNT−k′ =
1

2
Ê∗

x0. (5.46)

Or, expressing the (complex) amplitude in terms of this spectral coefficient from the DFT, we have

Êx0 = 2a∗NT−k′ . (5.47)

Now, let us consider the calculation of the time-averaged Poynting vector Pavg which is given

by

Pavg =
1

2
ℜ
[

Ê× Ĥ
∗
]

(5.48)
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where the carat indicates the phasor representation of the field, i.e.,

Ê = Êx0âx + Êy0ây + Êz0âz,

= 2ae,x,kâx + 2ae,y,kây + 2ae,z,kâz (5.49)

where ae,w,k is the kth spectral coefficient for the w component of the electric field with w ∈
{x, y, z}. Defining things similarly for the magnetic field yields

Ĥ = Ĥx0âx + Ĥy0ây + Ĥz0âz,

= 2ah,x,kâx + 2ah,y,kây + 2ah,z,kâz. (5.50)

The time-averaged Poynting vector can now be written in terms of the spectral coefficients as

Pavg = 2ℜ
[

[

ae,y,ka
∗
h,z,k − ae,z,ka

∗
h,y,k

]

âx +
[

ae,z,ka
∗
h,x,k − ae,x,ka

∗
h,z,k

]

ây +

[

ae,x,ka
∗
h,y,k − ae,y,ka

∗
h,x,k

]

âz

]

. (5.51)

Thus, importantly, when directly using these DFT coefficients in the calculation of the Poynting

vector, instead of the usual “one-half the real part of E cross H,” the correct expression is “two

times the real part of E cross H.”

5.6 Amplitude and Phase from Two Time-Domain Samples

In some applications the FDTD method is used in a quasi-harmonic way, meaning the source is

turned on, or ramped up, and then run continuously in a harmonic way until the simulation is ter-

minated. Although this prevents one from obtaining broad spectrum output, for applications that

have highly inhomogeneous media and where only a single frequency is of interest, the FDTD

method used in a quasi-harmonic way may still be the best numerical tool to analyze the problem.

The FDTD method is often used in this when in the study of the interaction of electromagnetic

fields with the human body. (Tissues in the human body are typically quite dispersive. Imple-

menting dispersive models that accurately describe this dispersion over a broad spectrum can be

quite challenging. When using a quasi-harmonic approach one can simply use constant coefficients

for the material constants, i.e., use the values that pertain at the frequency of interest which also

corresponds to the frequency of the excitation.)

When doing a quasi-harmonic simulation, the simulation terminates when the fields have

reached steady state. Steady state can be defined as the time beyond which temporal changes in

the amplitude and phase of the fields are negligibly small. Thus, one needs to know the amplitude

and phase of the fields at various points. Fortunately the amplitude and phase can be calculated

from only two sample points of the time-domain field.

Let us assume the field at some point (x, y, z) is varying harmonically as

f(x, y, z, t) = A(x, y, z) cos(ωt+ φ(x, y, z)). (5.52)

where A is the amplitude and φ is the phase, both of which are initially unknown. We will drop

the explicit argument of space in the following with the understanding that we are talking about

the field at a fixed point.
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Consider two different samples of the field in time

f(t1) = f1 = A cos(ωt1 + φ), (5.53)

f(t2) = f2 = A cos(ωt2 + φ). (5.54)

We will assume that the samples are taken roughly a quarter of a cycle apart to ensure the samples

are never simultaneously zero. A quarter of a cycle is given by T/4 where T is the period. We can

express this in terms of time steps as

T

4
=

1

4f
=

λ

4c
=

Nλ∆x

4c

∆t

∆t

=
Nλ

4Sc

∆t. (5.55)

Since we only allow an integer number of time-steps between t1 and t2, the temporal separation

between t1 and t2 would be int(Nλ/4Sc) time-steps.

Given these two samples, f1 and f2, we wish to determine A and φ. Using the trig identity for

the cosine of the sum of two values, we can express these fields as

f1 = A(cos(ωt1) cos(φ)− sin(ωt1) sin(φ)), (5.56)

f2 = A(cos(ωt2) cos(φ)− sin(ωt2) sin(φ)). (5.57)

We are assuming that f1 and f2 are known and we know the times at which the samples were taken.

Using (5.56) to solve for A we obtain

A =
f1

cos(ωt1) cos(φ)− sin(ωt1) sin(φ)
. (5.58)

Plugging (5.58) into (5.57) and rearranging terms ultimately leads to

sin(φ)

cos(φ)
= tan(φ) =

f2 cos(ωt1)− f1 cos(ωt2)

f2 sin(ωt1)− f1 sin(ωt2)
. (5.59)

The time at which we take the first sample, t1, is almost always arbitrary. We are free to call that

“time zero,” i.e., t1 = 0. By doing this we have cos(ωt1) = 1 and sin(ωt1) = 0. Using these values

in (5.59) and (5.58) yields

φ = tan−1

(

cos(ωt2)− f2
f1

sin(ωt2)

)

, (5.60)

and

A =
f1

cos(φ)
. (5.61)

Note that these equations assume that f1 6= 0 and, similarly, that φ 6= ±π/2 radians (which is the

same as requiring that cos(φ) 6= 0).

If f1 is identically zero, we can say that φ is ±π/2 (where the sign can be determined by the

other sample point: φ = −π/2 if f2 > 0 and φ = +π/2 if f2 < 0). If f1 is not identically zero, we

can use (5.60) to calculate the phase since the inverse tangent function has no problem with large

arguments. However, if the phase is close to ±π/2, the amplitude as calculated by (5.61) would
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involve the division of two small numbers which is generally not a good way to determine a value.

Rather than doing this, we can use (5.57) to express the amplitude as

A =
f2

cos(ωt2) cos(φ)− sin(ωt2) sin(φ)
. (5.62)

This equation should perform well when the phase is close to ±π/2.

At this point we have the following expressions for the phase and magnitude (the reason for

adding a prime to the phase and magnitude will become evident shortly):

φ′ =















−π/2 if f1 = 0 and f2 > 0
π/2 if f1 = 0 and f2 < 0

tan−1

(

cos(ωt2)−
f2
f1

sin(ωt2)

)

otherwise

(5.63)

and

A′ =

{

f1
cos(φ′)

if |f1| ≥ |f2|
f2

cos(ωt2) cos(φ′)−sin(ωt2) sin(φ′)
otherwise

(5.64)

There is one final step in calculating the magnitude and phase. The inverse-tangent function returns

values between −π/2 and π/2. As given by (5.64), the amplitude A′ can be either positive or

negative. Generally we think of phase as varying between −π and π and assume the amplitude is

non-negative. To obtained such values we can obtain the final values for the amplitude and phase

as follows

(A, φ) =







(A′, φ′) if A′ > 0
(−A′, φ′ − π) if A′ < 0 and φ′ ≥ 0
(−A′, φ′ + π) if A′ < 0 and φ′ < 0

(5.65)

Finally, we have assumed that t1 = 0. Correspondingly, that means that t2 can be expressed as

t2 = N2∆t where N2 is the (integer) number of time steps between the samples f1 and f2. Thus

the argument of the trig functions above can be written as

ωt2 = 2πSc
N2

Nλ

(5.66)

where Nλ is the number of points per wavelength of the excitation (and frequency of interest).

5.7 Conductivity

When a material is lossless, the phase constant β for a harmonic plane wave is given by ω
√
µǫ

and the spatial dependence is given by exp(±jβx). When the material has a non-zero electri-

cal conductivity (σ 6= 0), the material is lossy and the wave experiences exponential decay as it

propagates. The spatial dependence is given by exp(±γx) where

γ = jω

√

µǫ
(

1− j
σ

ωǫ

)

= α + jβ (5.67)



5.7. CONDUCTIVITY 129

where α (the real part of γ) is the attenuation constant and β (the imaginary part of γ) is the phase

constant. The attenuation and phase constants can be expressed directly in terms of the material

parameters and the frequency:

α =
ω
√
µǫ√
2

(

[

1 +
( σ

ωǫ

)2
]1/2

− 1

)1/2

, (5.68)

β =
ω
√
µǫ√
2

(

[

1 +
( σ

ωǫ

)2
]1/2

+ 1

)1/2

. (5.69)

When the conductivity is zero, the attenuation constant is zero and the phase constant reduces to

that of the lossless case, i.e., γ = jβ = jω
√
µǫ.

Assume a wave is propagating in the positive x direction in a material with non-zero electrical

conductivity. The wave amplitude will decay as exp(−αx). The skin depth δskin is the distance

over which the wave decays an amount 1/e. Starting with a reference point of x = 0, the fields

would have decayed an amount 1/e when x is 1/α (so that the exponent is simply −1). Thus, δskin

is given by

δskin =
1

α
. (5.70)

Since the skin depth is merely a distance, it can be expressed in terms of the spatial step, i.e.,

δskin =
1

α
= NL∆x (5.71)

where NL is the number of spatial steps in the skin depth (think of the subscript L as standing for

loss). NL does not need to be an integer.

It is possible to use (5.68) to solve for the conductivity in terms of the attenuation constant.

The resulting expression is

σ = ωǫ

(

[

1 +
2α2

ω2µǫ

]2

− 1

)1/2

. (5.72)

As shown in Sec. 3.12, when the electrical conductivity is non-zero the electric-field update equa-

tion contains the term σ∆t/2ǫ. Multiplying both side of (5.72) by ∆t/2ǫ yields

σ∆t

2ǫ
=

ω∆t

2

(

[

1 +
2α2

ω2µǫ

]2

− 1

)1/2

. (5.73)

Assume that one wants to obtain a certain skin depth (or decay rate) at a particular frequency which

is discretized with Nλ points per wavelength, i.e., ω = 2πf = 2πc/Nλ∆x. Thus the term ω∆t/2
can be rewritten

ω∆t

2
=

π

Nλ

c∆t

∆x

=
π

Nλ

Sc. (5.74)

Similarly, using the same expression for ω and using α = 1/NL∆x, one can write

2α2

ω2µǫ
=

2
(

1
NL∆x

)2

(

2πc
Nλ∆x

)2

µ0µrǫ0ǫr

=
N2

λ

2π2N2
Lǫrµr

. (5.75)
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Using (5.74) and (5.75) in (5.73) yields

σ∆t

2ǫ
=

π

Nλ

Sc

(

[

1 +
N2

λ

2π2N2
Lǫrµr

]2

− 1

)1/2

. (5.76)

Note that neither the temporal nor the spatial steps appear in the right-hand side.

As an example how (5.76) can be used, assume that one wants a skin depth of 20∆x for a

wavelength of 40∆x. Thus NL = 20 and Nλ = 40 and the skin depth is one half of the free-space

wavelength. Further assume the Courant number Sc is unity, ǫr = 4, and µr = 1. Plugging these

values into (5.76) yields σ∆t/2ǫ = 0.0253146.

Let us write a program where a TFSF boundary introduces a sine wave with a frequency that

is discretized at 40 points per wavelength. We will only implement electrical loss (the magnetic

conductivity is zero). Snapshots will be taken every time step after the temporal index is within 40
steps from the final time step. The lossy layer starts at node 100. To implement this program, we

can re-use nearly all the code that was described in Sec. 4.9. To implement this, we merely have

to change the gridInit3() function and the functions associated with the source function. The

new gridInit3() function is shown in Program 5.1. The harmonic source function is given by

the code presented in Program 5.2.

Program 5.1 gridinitlossy.c A Grid initialization function for modeling a lossy half

space. Here the conductivity results in a skin depth of 20 cells for an excitation that is discretized

using 40 cells per wavelength.

1 #include "fdtd3.h"

2

3 #define LOSS 0.0253146

4 #define LOSS_LAYER 100

5 #define EPSR 4.0

6

7 void gridInit3(Grid *g) {

8 double imp0 = 377.0;

9 int mm;

10

11 SizeX = 200; // size of domain

12 MaxTime = 450; // duration of simulation

13 Cdtds = 1.0; // Courant number

14

15 /* Allocate memory for arrays. */

16 ALLOC_1D(g->ez, SizeX, double);

17 ALLOC_1D(g->ceze, SizeX, double);

18 ALLOC_1D(g->cezh, SizeX, double);

19 ALLOC_1D(g->hy, SizeX - 1, double);

20 ALLOC_1D(g->chyh, SizeX - 1, double);

21 ALLOC_1D(g->chye, SizeX - 1, double);

22
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23 /* set electric-field update coefficients */

24 for (mm=0; mm < SizeX; mm++)

25 if (mm < 100) {

26 Ceze(mm) = 1.0;

27 Cezh(mm) = imp0;

28 } else {

29 Ceze(mm) = (1.0 - LOSS) / (1.0 + LOSS);

30 Cezh(mm) = imp0 / EPSR / (1.0 + LOSS);

31 }

32

33 /* set magnetic-field update coefficients */

34 for (mm=0; mm < SizeX - 1; mm++) {

35 Chyh(mm) = 1.0;

36 Chye(mm) = 1.0 / imp0;

37 }

38

39 return;

40 }

Program 5.2 ezincharm.c Functions to implement a harmonic source. When initialized, the

user is prompted to enter the number of points per wavelength (in the results to follow it is assumed

the user enters 40).

1 #include "ezinc3.h"

2

3 /* global variables -- but private to this file */

4 static double ppw = 0, cdtds;

5

6 /* prompt user for source-function points per wavelength */

7 void ezIncInit(Grid *g){

8

9 cdtds = Cdtds;

10 printf("Enter points per wavelength: ");

11 scanf(" %lf", &ppw);

12

13 return;

14 }

15

16 /* calculate source function at given time and location */

17 double ezInc(double time, double location) {

18 if (ppw <= 0) {

19 fprintf(stderr,

20 "ezInc: must call ezIncInit before ezInc.\n"

21 " Points per wavelength must be positive.\n");
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22 exit(-1);

23 }

24

25 return sin(2.0 * M_PI / ppw * (cdtds * time - location));

26 }

Assuming the user specified that the TFSF boundary should be at node 50 and there should be

40 points per wavelength for the harmonic source, Fig. 5.2(a) shows the resulting maximum of

the magnitude of the electric field as a function of position. For each position, all the snapshots

were inspected and the maximum recorded. Figure 5.2(b) shows a superposition of 41 snapshots

taken one time-step apart. One can see the exponential decay starting at node 100. Between node

50 and node 100 there is a standing-wave pattern caused by the interference of the incident and

reflected waves. From the start of the grid to node 50 the magnitude is flat. This is caused by the

fact that there is only scattered field here—there is nothing to interfere with the reflected wave and

we see the constant amplitude associated with a pure traveling wave. The ratio of the amplitude at

nodes 120 and 100 was found to be 0.3644 whereas the ideal value of 1/e is 0.3679 (thus there is

approximately a one percent error in this simulation).

If one were interested in non-zero magnetic conductivity σm, the loss term which appears in

the magnetic-field update equations is σm∆t/2µ. This term can be handled in exactly the same

way as the term resulting from electric conductivity.

5.8 Example: Obtaining the Transmission Coefficient for a Pla-

nar Interface

In this last section, we demonstrate how the transmission coefficient for a planar dielectric bound-

ary can be obtained from the FDTD method. This serves to highlight many of the points that were

considered in the previous section. We will compare the results to the exact solution. The disparity

between the two provides motivation to determine the dispersion relation in the FDTD (which is

covered in Chap. 7).

The majority of instructional material concerning electromagnetics is expressed in terms of

harmonic, or frequency-domain, signals. A temporal dependence of exp(jωt) is understood and

therefore one only has to consider the spatial variation. In the frequency domain, the fields and

quantities such as the propagation constant and the characteristic impedance are represented by

complex numbers. These complex numbers give the magnitude and phase of the value and will

be functions of frequency. In the following discussion a caret (hat) will be used to indicate a

complex quantity and one should keep in mind that complex numbers are inherently tied to the

frequency domain. Given the frequency-domain representation of the field at a point, the temporal

signal is recovered by multiplying by exp(jωt) and taking the real part. Thus a 1D harmonic field

propagating in the +x direction could be written in any of these equivalent forms

Ez(x, t) = ℜ
[

Ê+
z (x, t)

]

= ℜ
[

Ê+
z (x)e

jωt
]

= ℜ
[

Ê+
0 e

−γ̂xejωt
]

= ℜ
[

Ê+
0 e

−(α+jβ)xejωt
]

, (5.77)

where ℜ[] indicates the real part. Ê+
z (x) is the frequency-domain representation of the field (i.e.,

a phasor that is a function of position), γ̂ is the propagation constant which has a real part α and



5.8. TRANSMISSION COEFFICIENT FOR A PLANAR INTERFACE 133

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

M
ax

im
u

m
 E

le
ct

ri
c 

F
ie

ld
 [

V
/m

]

Space [spatial index]

(a)

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100  120  140  160  180  200

E
le

ct
ri

c 
F

ie
ld

 [
V

/m
]

Space [spatial index]

(b)

Figure 5.2: (a) Maximum electric field magnitude that exists at each point (obtained by obtaining

the maximum value in all the snapshots). The flat line over the first 50 nodes corresponds to the

scattered-field region. The reflected field travels without decay and hence produces the flat line.

The total-field region between nodes 50 and 100 contains a standing-wave pattern caused by the

interference of the incident and scattered fields. There is exponential decay of the fields beyond

node 100 which is where the lossy layer starts. (b) Superposition of 41 individual snapshots of the

field which illustrates the envelope of the field.
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Figure 5.3: Planar interface between two media. The interface is at x = 0 and a wave is incident

on the interface from the left. When the impedances of the two media are not matched, a reflected

wave must exist in order to satisfy the boundary conditions.

an imaginary part β, and Ê+
0 is a complex constant that gives the amplitude of the wave (it is

independent of position; the superscript “+” is merely used to emphasize that we are discussing a

wave propagating in the +x direction). Note that if more than a single frequency is present, Ê+
0

does not need to be the same for each frequency.

More generally, Ê+
0 will be a function of frequency (we could write this expressly as Ê+

0 (ω) but

the caret implicitly indicates dependence on frequency). To construct a temporal that consists of a

multiple frequencies, or even a continuous spectrum of frequencies, one must sum the contributions

from each frequency such as is done with a Fourier integral.

In FDTD simulations the time-domain form of the signal is obtained directly. However, one

often is interested in the behavior of the fields as a function of frequency. As has been discussed

in Sec. 5.3, one merely has to take the Fourier transform of a signal to obtain its spectral content.

This transform, by itself, is typically of little use. One has to normalize the signal in some way.

Knowing what came out of a system is rather meaningless unless one knows what went into the

system. Here we will work through a couple of simple examples to illustrate how a broad range of

spectral information can be obtained from FDTD simulations.

5.8.1 Transmission through a Planar Interface (Continuous World)

Consider the planar interface at x = 0 between two media as depicted in Fig. 5.3. We restrict

consideration to electric polarization in the z direction and assume the incident field originates in

the first medium. In the frequency domain, the incident, reflected, and transmitted fields are given

by

Êi
z(x) = Ê+

a1e
−γ̂1x incident, (5.78)

Êr
z(x) = Ê−

a1e
+γ̂1x = Γ̂Ê+

a1e
+γ̂1x reflected, (5.79)

Êt
z(x) = Ê+

a2e
−γ̂2x = T̂ Ê+

a1e
−γ̂2x transmitted, (5.80)
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where Γ̂ is the reflection coefficient, T̂ is the transmission coefficient, and γ̂n is the propagation

constant given by jω
√

µn(1− jσm
n /ωµn)ǫn(1− jσn/ωǫn) where the n indicates the medium and

σm is the magnetic conductivity. The amplitude of the incident field Ê+
a1 is, in general, complex

and a function of frequency. By definition Γ̂ and T̂ are

Γ̂ =
Êr

z(x)

Êi
z(x)

∣

∣

∣

∣

∣

x=0

=
Ê−

a1

Ê+
a1

, (5.81)

T̂ =
Êt

z(x)

Êi
z(x)

∣

∣

∣

∣

∣

x=0

=
Ê+

a2

Ê+
a1

. (5.82)

The fact that these are defined at x = 0 is important.

The magnetic field is related to the electric field by

Ĥ i
y(x) = − 1

η̂1
Êi

z(x), (5.83)

Ĥr
y(x) =

1

η̂1
Êr

z(x), (5.84)

Ĥ t
y(x) = − 1

η̂2
Êt

z(x), (5.85)

where the characteristic impedance η̂n is given by
√

µn(1− jσm
n /ωµn)/ǫn(1− jσn/ωǫn). Since

the magnetic and electric fields are purely tangential to the planar interface, the sum of the incident

and reflected field at x = 0 must equal the transmitted field at the same point. Matching the

boundary condition on the electric field yields

1 + Γ̂ = T̂ , (5.86)

while matching the boundary conditions on the magnetic field produces

1

η̂1
(1− Γ̂) =

1

η̂2
T̂ . (5.87)

Solving these for T̂ yields

T̂ =
2η̂2

η̂1 + η̂2
. (5.88)

Using this in (5.86) the reflection coefficient is found to be

Γ̂ =
η̂2 − η̂1
η̂2 + η̂1

. (5.89)

5.8.2 Measuring the Transmission Coefficient Using FDTD

Now consider two FDTD simulations. The first simulation will be used to record the incident

field. In this simulation the computational domain is homogeneous and the material properties

correspond to that of the first medium. The field is recorded at some observation point x1. Since

nothing is present to interfere with the incident field, the recorded field will be simply the incident
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field at this location, i.e, Ei
z(x1, t). In the second simulation, the second medium is present. We

record the fields at the same observation point but we ensure the point was chosen such that it is

located in the second medium (i.e., the interface is to the left of the observation point). Performing

an FDTD simulation in this case yields the transmitted field Et
z(x1, t). The goal now is to obtain

the transmission coefficient using the temporal recordings of the field obtained from these two

simulations.

Note that in this section we will not distinguish between the way in which field propagate in

the continuous world and the way in which they propagate in the FDTD grid. In Chap. 7 we will

discuss in some detail how these differ.

One cannot use Et
z(x1, t)/E

i
z(x1, t) to obtain the transmission coefficient. The transmission

coefficient is inherently a frequency-domain concept and currently we have time-domain signals.

The division of these temporal signals is essentially meaningless (e.g., the result is undefined when

the incident signal is zero).

The incident and transmitted fields must be converted to the frequency domain using a Fourier

transform. Thus one obtains

Êi
z(x1) = F

(

Ei
z(x1, t)

)

, (5.90)

Êt
z(x1) = F

(

Et
z(x1, t)

)

, (5.91)

where F indicates the Fourier transform. The division of these two functions is meaningful—at

least at all frequencies where Êi
z(x1) is non-zero. (At frequencies where Êi

z(x1) is zero, there is

no incident spectral energy and hence one cannot obtain the transmitted field at those particular

frequencies. In practice it is relatively easy to introduce energy into an FDTD grid that spans a

broad range of frequencies.)

Since the observation point was not specified to be on the boundary, the ratio of these field

fields is
Êt

z(x1)

Êi
z(x1)

=
Ê+

a2e
−γ̂2x1

Ê+
a1e

−γ̂1x1

=
Ê+

a2

Ê+
a1

e(γ̂1−γ̂2)x1 = T̂ e(γ̂1−γ̂2)x1 . (5.92)

Solving this for T̂ yields

T̂ (ω) = e(γ̂2−γ̂1)x1
Êt

z(x1)

Êi
z(x1)

. (5.93)

To demonstrate how the transmission coefficient can be reconstructed from FDTD simulations,

let us consider an example where the first medium is free space and the second one has a relative

permittivity ǫr of 9. In this case γ̂1 = jω
√
µ0ǫ0 = jβ0 and γ̂2 = jω

√
µ09ǫ0 = j3β0. Therefore

(5.93) becomes

T̂ (ω) = ej(3β0−β0)x1
Êt

z(x1)

Êi
z(x1)

= ej2β0x1
Êt

z(x1)

Êi
z(x1)

. (5.94)

The terms in the exponent can be written

2β0x1 = 2
2π

λ
x1 =

4π

Nλ∆x

N1∆x =
4π

Nλ

N1 (5.95)

where N1 is the number of spatial steps between the interface and the observation point at x1 and,

as was discussed in Chap. 5, Nλ is the number of spatial steps per a free-space wavelength of λ.
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The continuous-world transmission coefficient can be calculated quite easily from (5.88) and

this provides a reference solution. Ideally the FDTD simulation would yield this same value for

all frequencies. For this particular example the characteristic impedance of the first medium is

η̂1 = η0 while for the second medium it is η̂2 = η0/3. Thus the transmission coefficient is

T̂exact =
2η0/3

η0 + η0/3
= 1/2. (5.96)

Note that this is a real number and independent of frequency (so the tilde on T is somewhat mis-

leading).

For the FDTD simulations, let us record the field 80 spatial steps away from the interface, i.e.,

N1 = 80, and run the simulation for 8192 time steps, i.e., NT = 8192. The simulation is run at the

Courant limit Sc = 1. The source is a Ricker wavelet discretized so that the peak spectral content

exists at 50 points per wavelength (NP = 50). From Sec. 5.3, recall the relationship between the

points per wavelength Nλ and frequency index Nfreq which is repeated below:

Nfreq =
NT

Nλ

Sc. (5.97)

With a Courant number of unity and 8192 time steps, the points per wavelength for any given

frequency (or spectral index) is given by

Nλ =
8192

Nfreq

. (5.98)

Combining this with (5.93) and (5.95) yields

T̂FDTD = e
j
(

4πN1Nfreq

8192

)

Êt
z(x1)

Êi
z(x1)

. (5.99)

Ideally (5.96) and (5.99) will agree at all frequencies. To see if that is the case, Fig. 5.4 shows

three plots related to the incident and transmitted fields. Figure 5.4(a) shows the first 500 time

steps of the temporal signals recorded at the observation point both with and without the interface

present (i.e., the transmitted and incident fields, respectively). Figure 5.4(b) shows the magnitude

of the Fourier transforms of the incident and transmitted fields for the first 500 frequencies. Since

a Ricker wavelet was used, the spectra are essentially in accordance with the discussion of Sec.

5.2.3. There is no spectral energy at dc and the spectral content exponentially approaches zero at

high frequencies.

Figure 5.4(c) plots the magnitude of the ratio of the transmitted and incident field as a function

of frequency. Ideally this would be 1/2 for all frequencies. Note the rather small vertical scale of

the plot. Near dc the normalized transmitted field differs rather significantly from the ideal value,

but this is in a region where the results should not be trusted because there is not enough incident

energy at these frequencies. At the higher frequencies some oscillations are present. The normal-

ized field generally remains within two percent of the ideal value over this range of frequencies.

Figure 5.5(a) provides the same information as Fig. 5.4(c) except now the result is plotted

versus the discretization Nλ. In this figure dc is off the scale to the right (since in theory dc has an

infinite number of points per wavelength). As the frequency goes up, the wavelength gets shorter
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Figure 5.4: (a) Time-domain fields at the observation point both with and the without the interface

present. The field without the interface is the incident field and the one with the interface is the

transmitted field. (b) Magnitude of the Fourier transforms of the incident and transmitted fields.

The transforms are plotted versus the frequency index Nfreq. It can be seen that the fields do not

have much spectral content near dc nor at high frequencies. (c) Magnitude of the transmitted field

normalized by the incident field versus the frequency index. Ideally this would be 1/2 for all

frequencies. Errors are clearly evident when the spectral content of the incident field is small.
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and hence the number of points per wavelength decreases. Thus high frequencies are to the left

and low frequencies are to the right. The highest frequency in this plot corresponds to an Nfreq of

500. In terms of the discretization, this is Nλ = NT/Nfreq = 16.384. This may not seem like a

particularly coarse discretization, but one needs to keep in mind that this is the discretization in

frees pace. Within the dielectric, which here has ǫr = 9, the wavelength is three times smaller

and hence within the dielectric the fields are only discretized at approximately five points per

wavelength (which is considered a very coarse discretization). From this figure it is clear that

the FDTD simulations provide results which are close to the ideal over a fairly broad range of

frequencies.

Figure 5.5(b) shows the real and imaginary part of the reflection coefficient, i.e., T̂FDTD defined

in (5.99), as a function of the discretization. Ideally the imaginary part would be zero and the real

part would be 1/2. As can be seen, although the magnitude of the transmission coefficient is nearly

1/2 over the entire spectrum, the phase differs rather significantly as the discretization decreases

(i.e., the frequency increases).

The Matlab code used to generate Fig. 5.4 is shown in Program 5.3 while the code which gen-

erated Fig. 5.5 is given in Program 5.4. It is assumed the incident field from the FDTD simulation

is recorded to a file named inc-8192 while the transmitted field, i.e., the field when the dielectric

is present, is recorded in die-8192. The code in Program 5.3 has to be run prior to that of 5.4 in

order to load and initialize the data.

Let us now consider the same scenario but let the observation point be four steps away from

the boundary instead of 80, i.e., N1 = 4. Following the previous steps, the incident and transmitted

fields are recorded, their transforms are taken, then divided, and finally the phase is adjusted to

obtain the transmission coefficient. The result for this observation point is shown in Fig. 5.6. The

real and imaginary parts stay closer to the ideal values over a larger range of frequencies than

when the observation point was 80 cells from the boundary. The fact that the quality of the results

are frequency sensitive as well as sensitive to the observation point is a consequence of numeric

dispersion in the FDTD grid, i.e., different frequencies propagate at different speeds. (This is the

subject of Chap. 7.)

Program 5.3 Matlab session used to generate Fig. 5.4.

1 incTime = dlmread(’inc-8192’); % incident field file

2 dieTime = dlmread(’die-8192’); % transmitted field file

3

4 inc = fft(incTime); % take Fourier transforms

5 die = fft(dieTime);

6

7 nSteps = length(incTime); % number of time steps

8 freqMin = 1; % minimun frequency index of interest

9 freqMax = 500; % maximum frequency of interest

10 freqIndex = freqMin:freqMax; % range of frequencies of interest

11 % correct for offset of 1 in matlab’s indexing

12 freqSlice = freqIndex + 1;

13 courantNumber = 1;

14 % points per wavelength for freqencies of interest
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Figure 5.5: (a) The magnitude of the normalized transmitted field as a function of the (free space)

discretization Nλ. Ideally this would be 1/2 for all discretizations. (b) Real and imaginary part of

the transmission coefficient transformed back to the interface x = 0 versus discretization. Ideally

the real part would be 1/2 and the imaginary part would be zero for all discretization. For these

plots the observation point was 80 cells from the interface (N1 = 80).
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Figure 5.6: Real and imaginary part of the transmission coefficient transformed back to the inter-

face x = 0 versus discretization. Ideally the real part would be 1/2 and the imaginary part would

be zero for all discretization. The observation point was four cells from the interface (N1 = 4).
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15 nLambda = nSteps ./ freqIndex * courantNumber;

16 clf

17 subplot(3, 1, 1)

18 hold on

19 plot(incTime(freqSlice), ’-.’);

20 plot(dieTime(freqSlice));

21 legend(’Incident field’, ’Transmitted field’);

22 xlabel(’Temporal Index’);

23 ylabel(’{\it E_z}[{\it x}_1,{\it t}] V/m’);

24 title(’(a) Temporal Fields’);

25

26 subplot(3,1,2)

27 hold on

28 plot(freqIndex, abs(inc(freqSlice)), ’-.’);

29 plot(freqIndex, abs(die(freqSlice)));

30 legend(’Incident field’, ’Transmitted field’);

31 xlabel(’Frequency Index’);

32 ylabel(’|{\it E_z}[{\it x}_1,\omega]|’);

33 title(’(b) Transform vs. Frequency Index’);

34 hold off

35

36 subplot(3, 1, 3)

37 hold on

38 plot(freqIndex, abs(die(freqSlice) ./ inc(freqSlice)));

39 xlabel(’Frequency Index’);

40 ylabel(’|{\it Eˆt_z}[{\it x}_1,\omega]/...

41 {\it Eˆi_z}[{\it x}_1,\omega]|’);

42 title(’(c) Normalized Transmitted Field vs. Frequency Index’);

43 hold off

Program 5.4 Matlab session used to generate Fig. 5.5. The commands shown in Program 5.3

would have to be run prior to these commands in order to read the data, generate the Fourier

transforms, etc.

1 clf

2

3 subplot(2, 1, 1)

4 hold on

5 plot(nLambda, abs(die(freqSlice) ./ inc(freqSlice)));

6 xlabel(’Points per Wavelength’);

7 ylabel(’|{\it Eˆt_z}[{\it x}_1,\omega]/...

8 {\it Eˆi_z}[{\it x}_1,\omega]|’);

9 title(’(a) Normalized Transmitted Field vs. Discretization’);

10 axis([0 300 0 1])
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11 hold off

12

13 % Array obtained from exp() must be transposed to make arrays

14 % conformal. Simply using ’ (a prime) for trasposition will yield

15 % the conjugate transpose. Instead, use .’ (dot-prime) to get

16 % transposition without conjugation.

17 subplot(2, 1, 2)

18 hold on

19 plot(nLambda, real(exp(j*pi*freqIndex/25.6).’ .* ...

20 die(freqSlice) ./ inc(freqSlice)));

21 plot(nLambda, imag(exp(j*pi*freqIndex/25.6).’ .* ...

22 die(freqSlice) ./ inc(freqSlice)), ’-.’);

23 xlabel(’Points per Wavelength’);

24 ylabel(’Transmission Coefficient, {\it T}(\omega)’);

25 title(’(b) Real and Imaginary Part of Transmission Coefficient’);

26 legend(’Real part’, ’Imaginary part’);

27 axis([0 300 -1 1])

28 grid on

29 hold off

Although we have only considered the transmission coefficient in this example, the reflection

coefficient could be obtained in a similar fashion. We have intentionally considered a very simple

problem in order to be able to compare easily the FDTD solution to the exact solution. How-

ever one should keep in mind that the FDTD method could be used to analyze the reflection or

transmission coefficient for a much more complicated scenario, e.g., one in which the material

properties varied continuously, and perhaps quite erratically (with some discontinuities present),

over the transition from one half-space to the next. Provided a sufficiently small spatial step-size

was used, the FDTD method can solve this problem with essentially no more effort than was used

to model the abrupt interface. However, to obtain the exact solution, one may have to work much

harder.
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