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1 Introduction

1.1 Purpose of Document

This document has been laid out so that it can be used for:

1. RL-Glue what? learning about RL-Glue at an abstract level

2. Compatibility: converting existing agents and environments to RL-Glue

3. Plugging agents and environments together: writing experiment programs

4. What function for...: quick reference for RL-Glue functions

In September 2008, immediately preceding RL-Glue 3.0 development, the RL-Glue Project was
split into two projects: RL-Glue and RL-Glue Extensions.

RL-Glue now only includes the RL-Glue interface and plugs for direct-compile C/C++ agents,
environments and experiment programs.

The RL-Glue Extensions Project contains codecs that provide cross language support for RL-Glue
(C/C++, Java, Python, Matlab, Lisp, etc). This multi-language support was previously bundled
with RL-Glue. The reason for the split was partially to separate the technical details of using
RL-Glue with a particular language from the high level overview of what RL-Glue does.
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This document is the high-level overview document: it contains contains NO implementation
specific technical details for writing programs.

Please refer to the RL-Glue technical manual and manuals for specific codecs for language specific
details on how to implement agents, environments and experiment programs.

1.2 How to Use This Document

This document has been divided to reflect the purposes described above. To learn about the
major components of RL-Glue and a description of how those components interact see Section 2.
To learn how to make environment and agent programs compatible with RL-Glue we recommend
sections 3.1 and 4.1. Sections 3.1 and 4.1 describe only the mandatory functions that RL-Glue
environments and agents must implement. Sections 3.2 and 4.2 describe advanced environment
and agent functions. To learn about experiment programs and how they interact with RL-Glue see
Section 5. For quick function reference see Section 6. Frequently asked questions can be found in
Section 8. A summary of and explanations for all changes from RL-Glue 2.X to RL-Glue 3.0 can
be found in Section 7.

RL-Glue uses naming conventions and definitions from Sutton and Barto’s text: “Reinforcement
Learning: An Introduction”. This text is available for free online: http://www.cs.ualberta.ca/
~sutton/book/the-book.html.

2 RL-Glue Concepts

A large part of studying and researching reinforcement learning is experimentation. When you
write an agent, you should ensure the agent makes exploratory moves to discover more about the
world. Similarly, it is important that you are able to “explore” new algorithms and ideas without
having to create the experiment code for each test. One of the goals of RL-Glue is to simplify and
accelerate the process of writing an experiment so that many ideas can be easily tested.

In machine learning research, it is important to look at other work being done in the field, compare
your own performance and then improve. One goal for RL-Glue is to provide a consistent tool
for using and comparing agents and environments from diverse sources. A common problem for
researchers arises when they try compare their work with previously published results.

Before RL-Glue, the solution was often to reverse engineer code for the experiment based on
the results and (often incomplete) implementation descriptions that had been published. Even
when code was released to the public, it was often still a challenge to understand and adapt the
original code. Now, you can make the necessary RL-Glue agent/environment/experiment programs
available to the public such that another experimenter can reproduce your original experiment
and easily experiment with their own code to compare performance. Several recent reinforcement
competitions, at NIPS and ICML have used RL-Glue for benchmarking participant submissions,
further exemplifying the utility of RL-Glue to the research community.
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Figure 1: The RL-Glue Standard. Arrows indicate function call direction.

RL-Glue is both a set of ideas and standards, as well as a software implementation. In theory,
RL-Glue is a protocol for the reinforcement learning community to follow. Having this very simple
standard of necessary functions facilitates the exchange and comparison of agents and environments
without limiting their abilities. As software, RL-Glue is functionally a test harness to “plug in”
agents, environments and experiment programs without having to continually rewrite the connect-
ing code for these pieces. An experiment program is, very simply, code stating how many times to
run an agent in an environment and what data should be extracted from this interaction. Provided
the agent, environment, and experiment program follow the RL-Glue protocol, by implementing
the few necessary functions, they can easily be plugged in with the RL-Glue code to have an ex-
periment running quite effortlessly. Figure 1 is a diagram which shows how function calls work in
RL-Glue.

The Experiment Program contains the “main function” which will make all of the requests for
information through RL-Glue. These requests are usually related to setting up, starting and running
the experiment and then gathering data about the agent’s performance. The experiment program
can never interact with the agent or environment directly: all contact goes through the RL-Glue
interface. There is also no direct contact between the agent and the environment. Any information
the agent or environment returns is passed through RL-Glue to the module which needs it.

2.1 Agents, Environments and Experiment Programs

Understanding the semantics we ascribe to agents, environments, and experiments is a fundamental
part of understanding RL-Glue.

In RL-Glue, the agent is both the learning algorithm and the decision maker. The agent decides
which action to take at every step.

The environment is responsible for storing all the relevant details of the world, or problem of your
experiment. The environment generates the observations/states/perceptions that are provided to
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the agent, and also determines the transition dynamics and rewards.

The experiment is the intermediary which (through RL-Glue) controls all communication between
the agent and environment. This structured separation is by design, division of the agent and
environment both helps create modularized code and captures our intuitions about how much the
agent and environment should “know” about each other.

The experiment program will be familiar to anyone who has created reinforcement learning experi-
ments. Akin to the typical main function in many reinforcement learning experiments, an RL-Glue
experiment program is a control loop which runs the agent through the environment x number of
times, perhaps doing y trials of these x episodes, all the while gathering data about how efficiently
the agent has behaved or how quickly it has learned. RL-Glue provides several functions (Section
6) to assist in writing an experiment program.

3 RL-Glue Environment Programs

The environment represents everything outside the agent’s direct control. For example, in a tabular
grid world, the environment determines the state space, the obstacles, the rewards, start states,
termination conditions and the state transitions. In a robotic task, the environment would also
include the robot’s body, because the agent does not have complete, deterministic control over its
motors. The environment is basically everything that is not the agent.

In RL-Glue, the environment is defined by a set of parameterized functions that the RL-Glue
interface queries on behalf of the experiment program. These functions define what the environment
does before an experiment begins, at the beginning of an episode, on every remaining step of
the episode and after the experiment is completed. The following sections describe the basic
requirements of an RL-Glue environment and present a complete list of all environment functions.

3.1 Essential Components Of A RL-Glue Environment

Every RL-Glue environment must implement a number of functions. The most important functions
are env start and env step.

3.1.1 Observation and Action Encoding

In RL-Glue, Observations, Actions, and some other types are represented by structures that are
any combination of:

• list of discrete numbers (int)

• list of continuous numbers (double)

• list of ASCII characters
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We have found that most action and observation types can easily be captured with this structure.
In a grid world, for example, the action can be an int list of length 1 (with valid values 0-3),
corresponding to (N,S,E,W) and the observation can also be an int list of length 1 that maps
to the agent’s current state label (which is also the state of the environment, in this case). In a
problem like Mountain Car, the actions are discrete (0-2) and the observation is the car’s position
and velocity (both real numbers). The action can be an int list of length 1 and the observation
can be a double list of length two. Different implementation languages will use different structures
to encode observations and actions: please refer to the codec specific manual for your programming
language of choice for more details.

3.1.2 Environment Start

The env start function is very simple. The function takes no input and simply returns an ob-
servation. The env start function is the first function called at the beginning of an episode;
env start chooses the initial state of the environment and returns the corresponding observation.
For example, the following pseudocode selects a random start state for a grid world and returns
the observation:

1. env_start --> observation
2. state = rand()*num_states
3. set observation equal to state
4. return observation

3.1.3 Environment Step

The other essential piece of a RL-Glue environment is the env step function. The env step
function takes an action as input and returns an observation, a reward and a termination flag.
In most reinforcement learning problems, the env step function updates the internal state of the
environment, tests for end of episode and returns the new observation of state and current reward.
In other words, step function encodes the state transition and reward functions. Keeping with the
grid world example, the following would be a valid env step function:

1. env_step(action) --> reward, observation, flag
2. newState = updateState(action, state)
3. flag = isTerminal(newState)
3. reward = calculate reward for newState
4. set observation equal to newState
5. state = newState
6. return reward, observation, flag

Here we assume the existence of a state update function and an isTerminal function that checks if
the current state is a terminal state.
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So thats it. Just fill in two functions and you have a valid RL-Glue environment. In later sections
we will discuss advanced environment functions and how these additional functions can be used to
write more complex experiment programs.

3.2 Additional Components Of A RL-Glue Environment

So far we have only scratched the surface of what you can do with RL-Glue environments. Ad-
ditional environment functions can be used to initialize data structures and flexibly communicate
with the environment from the experiment through ascii messages.

3.2.1 Task Specification Language (task spec)

In an effort to provide the agent writer with simple and concise information about the environ-
ment, some information, called the task spec, is provided by the environment for the agent. The
task spec encodes information about the structure of the observations, actions, and rewards. The
environment’s init function (env init) encodes this information as an ASCII string. The string is
then passed to the agent’s init function (agent init). This information can also be used to check
if an agent and environment pair are compatible. The agent is responsible for parsing any relevant
information out of the task spec in the agent init function.

More specifically, the task spec string encodes a version number, the number of observation and
action dimensions, the types of observations and actions, the ranges of the observations and actions
and the min and max reward values.

The task spec is constantly evolving to match the state-of-art of learning algorithms and tasks
being solved in reinforcement learning research; we expect that the task spec will evolve much
faster than the main RL-Glue protocol. To prevent this document from becoming quickly outdated,
we have separated the task spec documentation from the main RL-Glue documentation. Please
see the online task spec documentation for details about different task spec versions.

3.2.2 Environment Initialization and Cleanup

Most environments need to store an internal state representation and therefore many environment
programs you write will need to allocate and deallocate data structures at the beginning and end
of a learning experiment. The env init function allocates any global data structures and variables
that will be accessed by the start and step functions. For example, the env init functions might
initialize the tabular state variable to zero and allocate a numStates X numStates state transition
array. The env init function can optionally define a task spec string. The env init function
must return a string, but it may return an empty string if the task spec is not required for your
experiment.

The env cleanup function usually deallocates or frees anything allocated in env init.
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3.2.3 Environment Message

Once in a while you will find yourself wishing for the ability to add custom environment functions
to RL-Glue that can be called by your experiment program. The env message function allows you
to basically add your own functionality to the RL-Glue spec. You can send a string message to
the environment and it can respond with a string. For example: you could make random starting
states a parameter of your environment by using a message to toggle that property:

1. env_message(inMessage) --> outMessage
2. if inMessage == "turnOffRandomStarts"
3. randStarts = false
4. end
5. if inMessage == "turnOnRandomStarts"
6. randStarts = true
7. end
8. return ""

4 RL-Glue Agent Programs

An RL-Glue agent can be as simple as a program the returns a random number on every step
or a more advanced algorithm that learns a model of the reward and transition functions of the
environment while maximizing reward. The agent program is a decision maker first and foremost:
it must return an action when queried by RL-Glue. Many RL-Glue agents, however, learn the best
action by learning from the sequence of observations, actions and rewards during an episode. Agent
programs, like environments, are completely defined by a set of functions you must implement.
RL-Glue calls these agent functions during an experiment, as directed by the experiment program.
Whether you are writing a random agent or a learning agent you usually only need to implement
a few functions. This section covers the basic requirements of an RL-Glue agent and describes a
number of optional agent functions.

4.1 Essential Components Of A RL-Glue Agent

An agent program is fully compatible with RL-Glue if it initializes the action type and implements
three functions: agent start, agent step and agent end.

4.1.1 Action Types

The primary agent functions take some combination of observations and rewards as input and return
actions. The observations and rewards are created by the environment, so the agent program needs
to only read their values. The actions, however, must be defined by the agent. Actions can be any
combination of a list of int, double, and character values.
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4.1.2 Agent Start

The agent start function selects the first action at the beginning of an episode based on the first
observation from the environment. The agent start function does not receive a reward as input;
agent start usually contains no learning update code. For example, the following function selects
the first action based on the current value function estimate:

1. agent_start (observation) --> action
2. lastObservation=observation
3. for each action a
4. if highest valued action valueFunction(observation,a)
5. then store a as lastAction
6. return lastAction

4.1.3 Agent Step

The agent step function encodes the heart of the agent’s learning algorithm and action selection
mechanism. At a minimum the step function must return an action every time it is called. In
most learning agents, the step function queries the agent’s action selection function and performs
a learning update based on the input observation and reward. The following agent step function
shows pseudocode for a value update:

1. agent_step(reward, observation)-> action
2. update(valueFunction, lastObservation, lastAction, reward, observation)
3. newAction = select_action(observation, valueFunction)
4. lastObservation = observation
5. lastAction = newAction
6. return newAction

Notice that the agent program must explicitly store the observation and action from the previous
time step. RL-Glue does not make the history of actions, observations and rewards available to the
agent or environment.

4.1.4 Agent End

In an episodic task, the environment enters a terminal state that ends the episode. RL-Glue
responds to the end of an episode by calling the agent end function, passing the reward produced
on the last transition to the agent and signaling the end of the current episode. The agent end
function usually performs a final learning update based on the last transition and also performs any
other end-of-episode routines, such as clearing eligibility traces. If the environment is non-episodic
RL-Glue will never call agent end.

Continuing with the SARSA example:
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1. agent_end (reward)
2. update(valueFunction, lastObservation, lastAction, reward)

The agent end function does not receive the final observation from the environment. In many
learning problems this is of no consequence because the agent does not make a decision in the
terminal state. If, however, the agent were learning a model of the environment, information about
the final transition would be important. In this case, it is recommended that the environment be
augmented with a terminal state that has a reward of zero on the transition into it. This choice
was made to keep the RL-Glue interface as minimal and light-weight as possible.

4.2 Additional Components Of A RL-Glue Agent

You now can construct a basic RL-Glue agent. RL-Glue agents, like environments, can be made
more useful with the addition of a few optional agent functions. This section describes how to use
initialization, cleanup and generic message functions.

4.2.1 Agent Initialization and Cleanup

Agent programs, like environments, often need to allocate and free various data structures. The
agent init and agent cleanup functions are called at the beginning and end of a learning ex-
periment, respectively. The agent init function receives the task spec string as input. The
agent init function usually parses the task spec and stores various information encoded in the
string. For example, after parsing the task spec, the agent init function can then initialize
the value function array to the size state space using the number of states from the task spec.
Remember the task spec is not required and could just be an empty string.

4.2.2 Agent Message

The agent message function is used to send an arbitrary string message to the agent program. This
function can be used to change agent parameters, notify the agent that the exploration phase is
over, and request the name of the agent program, for example. People have created whole protocols
that use agent message to set agent learning parameters, query their value functions, and more.

Here is a quick example of how you could query the current values of some parameters of an agent:

agent_message(inMessage) --> outMessage
if inMessage == "getCurrentStepSize"

return alpha
end
if inMessage == "getCurrentExplorationRate"

return epsilon
end
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return ""

5 RL-Glue Experiment Programs

Usually the shortest and easiest part of writing your first learning experiment is writing the experi-
ment program. The experiment program has no interface to implement and is mostly comprised of
calls to the already existing RL-Glue functions. The experiment program has four main duties: a)
start the experiment b) specify the sequence of agent-environment interactions (steps) c) extract
and analyze experimental data d) end the experiment and clean up. Only the RL-Glue interface
functions can be called by the experiment program. No agent or environment functions can be
directly accessed by the experiment program.

5.1 Basic Experiment Programs

At a minimum the experiment program must call RL init and RL cleanup and execute several time
steps of agent-environment interaction. The following pseudo code represents a simple experiment
program.

1. RL_init()
2. RL_start()
3. steps=0
4. terminal=false
5. while steps < 100 and not terminal
6. terminal,reward,observation,action = RL_step()
7. steps=steps+1
8. RL_cleanup()

This experiment program initializes the agent and environment (RL init), calls the start functions
of the agent and environment (RL start) and then executes a 100 or less step episode.

The RL step function calls the env step function passing it the most recent agent action (in this
case from agent start). The env step function returns the new observation, reward and terminal
flag. If the flag is not set the agent step function is called with the new observation and reward
as input arguments. The action returned by agent step is stored by RL-Glue until the next call to
RL step. If the flag is set, the agent end function is called with the reward as input. This process
continues until either the flag is set or 100 steps are completed.

Using the RL step function gives the experiment designer access to all the data produced during
an episode; however, it is often more convenient to use the RL episode function when step-level
control is not needed. Lines 5 through 7, in the above experiment program, can be replaced by
a single call to RL episode(100). If the input to RL episode is zero, control will return to the
experiment program if and only if the environment enters a terminal state (i.e., terminal flag from
the env step function is set to true).
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The RL step function allows the experiment program to record/sum/average the reward at each
step, but the RL episode function runs many (perhaps millions of) steps before returning control
to the experiment program. The RL return and RL num steps functions allow the experiment
program to retrieve the cumulative reward and the number of steps used during the episode.
Specifically, RL return returns the sum of rewards accumulated during the current or most recently
completed episode (it is reset to zero at the start of every episode). The RL num steps returns the
number of steps elapsed during the current or most recently completed episode (also reset to zero).
The function reference in Section 6 provides pseudo code for each of the RL-Glue interface functions.

Putting these new functions together we can write a more useful experiment program:

1. RL_init()
2. theReturn = 0
3. for 1...100
4. RL_episode(1000)
5. theReturn += RL_return()
6. Print theReturn/100
7. RL_cleanup()

The above experiment program runs 100 episodes, each with max length 1000, and computes the
average cumulative reward per episode.

5.2 Advanced Experiment Programs

5.2.1 Training/Testing Phase Experiment

We can now produce more advanced experiment programs that might be used in typical reinforce-
ment learning research:

1. RL_init()
2. numSteps = 0
3. for 1...1000
4. RL_episode(1000)
5. RL_agent_message("freezeAgentPolicy")
6. for 1...100
7. RL_episode(1000)
8. numSteps += RL_num_steps()
9. Print numSteps/100
10. RL_cleanup()

This experiment program has two phases. During the exploration phase (lines 3-5) the agent is
allowed to interact with the environment without any penalty: the experiment does not measure
the reward or number of steps taken during the exploration phase. The experiment program then
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informs the agent that the training phase is over (line 5). The agent then (presumably) stops
learning so its policy can be evaluated on the same environment for 100 episodes (lines 6-8). The
evaluation phase records the agents performance by measuring the average number of steps the
agent takes during each episode. Many results in the reinforcement learning literature are collected
in a similar fashion.

Feel free to combine, mix and match the various RL-Glue interface functions. You will find that,
these functions allow you to write powerful experiment programs that are easy to read and under-
stand.

6 Command and Function Reference

Once you are comfortable with the basics and you have written a few agents and environments you
may often find yourself wondering “I need to do X, what function should I use?”. You may also
wonder what is the “intended purpose” of a particular RL-Glue function, when you are reviewing
someone else’s agent or environment code. This section provides a complete listing of all agent,
environment and RL-Glue interface functions for quick reference.

6.1 Agent Functions

Every agent must implement all of the following routines. Note these functions are only accessed
by the RL-Glue. Experiment programs should not try to bypass the Glue to directly call these
functions.

agent_init(task_specification)

This function will be called first, even before agent start. The task spec is a description of
important experiment information, including but not exclusive to a description of the state and
action space. The RL-Glue standard for writing task spec strings is found here. In agent init ,
information about the environment is extracted from the task spec and then used to set up any
necessary resources (for example, initialize the value function).

agent_start(first_observation) --> first_action

Given the first observation (the observation of the agent in the start state) the agent must then
return the action it wishes to perform. This is called once if the task is continuing, else it happens
at the beginning of each episode.

agent_step(reward, observation) --> action
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This is the most important function of the agent. Given the reward garnered by the agent’s
previous action and the resulting observation, choose the next action to take. Any learning (policy
improvement) should be done through this function.

agent_end(reward)

If the agent is in an episodic environment, this function will be called after the terminal state is
entered. This allows for any final learning updates. If the episode is terminated prematurely (i.e.,
RL episode cutoff before entering a terminal state) agent end is NOT called.

agent_cleanup()

This function is called at the end of a run/trial and can be used to free any resources which may
have been allocated in agent init . Calls to agent cleanup should be in a one to one ratio with
the calls to agent init .

agent_message(input_message) --> output_message

The agent message function is a jack of all trades and master of none. Having no particular
functionality, it is up to the user to determine what agent message should implement. If there
is any information which needs to be passed in or out of the agent, this message should do it.
For example, if it is desirable that an agent’s learning parameters be tweaked mid experiment, the
author could establish an input string that triggers this action. Likewise, if the author wished to
extract a representation of the value function, they could establish an input string which would
cause agent message to return the desired information.

NOTE: Unlike the other functions, agent message can be called at any time: including before
agent init and after agent cleanup.

6.2 Environment Functions

Every environment must implement all of the following routines. Note these functions are only
accessed by the RL-Glue. Experiment programs should not try to bypass the Glue and directly
call these functions.

env_init() --> task_specification

This routine will be called exactly once for each trial/run. This function is an ideal place to initialize
all environment information and allocate any resources required to represent the environment. It
must return a task spec which adheres to the task spec language. A task spec stores information
regarding the observation and action space, as well as whether the task is episodic or continuous.
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env_start() --> first_observation

For a continuing task this is done once. For an episodic task, this is done at the beginning of each
episode. env start assembles a first observation given the agent is in the start state. Note the
start state cannot also be a terminal state.

env_step(action) --> reward, observation, terminal

Complete one step in the environment. Take the action passed in and determine what the reward
and next state are for that transition.

env_cleanup()

This can be used to release any allocated resources. It will be called once for every call to env init.

env_message(input_string) --> output_string

Similar to agent message, this function allows for any message passing to the environment required
by the experiment program. This may be used to modify the environment mid experiment. Any
information that needs to passed in or out of the environment can be handled by this function.

NOTE: Unlike the other functions, env message can be called at any time: including before
env init and after env cleanup.

6.3 Interface Routines Provided by the RL-Glue

The following built-in RL-Glue functions are provided primarily for the use of the experiment
program writers. Using these functions, the experiment program gains access to the corresponding
environment and agent functions. The implementation of these routines are to be standard across
all RL-Glue users. To ensure agents/environments/experiment programs can be exchanged between
authors with no changes necessary, users should not change the RL-Glue interface code provided.

To understand the following, it is helpful to think of an episode as consisting of sequences of
observations, actions, and rewards that are indexed by time-step as follows:

o0, a0, r1, o1, a1, r2, o2, a2, ..., rT, terminal_observation

where the episode lasts T time steps (T may be infinite) and terminal observation is a special,
designated observation signaling the end of the episode.
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RL_init() --> task_specification
agent_init(env_init())

This initializes everything, passing the environment’s task spec to the agent. This should be called
at the beginning of every trial.

RL_start() --> o0, a0
o = env_start()
a = agent_start(o)
nextAction = a

return o,a

Do the first step of a run or episode. The action is saved in nextAction so that it can be used on
the next step.

RL_step() --> rt, ot, terminal, at
r,o,terminal = env_step(nextAction)
if terminal == true

agent_end(r)
return r, o,terminal

else
a = agent_step(r, o)
nextAction = a

return r, o, terminal, a

Take one step. RL step uses the saved action and saves the returned action for the next step. The
action returned from one call must be used in the next, so it is better to handle this implicitly so
that the user doesn’t have to keep track of the action. If the end-of-episode observation occurs,
then no action is returned.

RL_episode(steps) --> terminal
num_steps = 0
o, a = RL_start()
num_steps = num_steps + 1
list = [o, a]
while o != terminal_observation

if(steps !=0 and num_steps >= steps)
return 0

else
r, o, a = RL_step()
list = list + [r, o, a]
num_steps = num_steps + 1
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agent_end(r)
return 1

Do one episode until a termination observation occurs or until steps steps have elapsed, whichever
comes first. As you might imagine, this is done by calling RL start, then RL step until the terminal
observation occurs. If steps is set to 0, it is taken to be the case where there is no limitation on
the number of steps taken and RL episode will continue until a termination observation occurs. If
no terminal observation is reached before num steps is reached, the agent does not call agent end,
it simply stops.

RL_return() --> return

Return the cumulative total reward of the current or just completed episode. The collection of all
the rewards received in an episode (the return) is done within RL return; however, any discounting
of rewards must be done inside the environment or agent.

RL_num_steps() --> num_steps

Return the number of steps elapsed in the current or just completed episode.

RL_cleanup()
env_cleanup()
agent_cleanup()

Provides an opportunity to reclaim resources allocated by RL init.

RL_agent_message(input_message_string) --> output_message_string
return agent_message(input_message_string)

This message passes the input string to the agent and returns the reply string given by the agent.
See agent message for more details.

RL_env_message(input_message_string) --> output_message_string
return env_message(input_message_string)

This message passes the input string to the environment and returns the reply string given by the
environment. See env message for more details.

7 Changes from RL-Glue 2.x

Version 3.0 of RL-Glue represents a large series of updates with the intention of bringing RL-Glue
from a University of Alberta side project to an open source project generally useful to the global
reinforcement learning community. As part of that process, we made some pretty big changes.
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7.1 The Codec Split

The codecs (including the C/C++ codec) have been split from the main RL-Glue project. Each
codec package is now more independent, and they each may offer something different to the user.
However, as always, they layer on RL-Glue. The root page for all of the codecs is:
http://glue.rl-community.org/Home/Extensions

As usual, you don’t need to change your code depending on how it will be used. The code for an
agent, environment, or experiment is identical no matter if you will run it using sockets or directly
compiled together. The only difference is what library you link against.

7.1.1 RL-Glue Project

The idea of the RL-Glue project is that it will very very rarely change. We’ve made most of the
changes on our wishlist, so RL-Glue can become a library that is standard and reliable for doing
reinforcement learning experiments. The goal is that it is always there, and it always just works.

This project is written entirely in C and can be linked from C or C++ code.

When you download and install the RL-Glue project, you get a few artifacts:

rl glue executable socket server The server for running socket-based experiments.

librlglue A C library that can be linked against for creating executables where the agent, envi-
ronment, and experiment program are all written in C or C++. These experiments have
virtually no rl-glue calling overhead.

librlgluenetdev A C library that includes the network code that is used by the rl glue socket
server. This code is re-used by the C/C++ network codec and by other custom codecs such
as the Atari project.

librlutils A C library that provides implementations for some handy utility functions. This code
is expected to be re-used by most C/C++ agents and environments, either direct-compile or
through the C/C++ network codec.

Agent/Environment/Experiment Headers Four header files: RL glue.h Agent common.h,
Environment common.h, and RL common.h.

The way that they should be included in your agents/environments/experiments is like this:

<rlglue/RL_common.h> /* Data structures */
<rlglue/RL_glue.h> /* (RL_) functions for experiments (includes RL_common) */
<rlglue/Agent_common.h> /* Agent (agent_) functions (includes RL_common) */
<rlglue/Environment_common.h> /* Environment (env_) functions (includes RL_common) */
<rlglue/utils/C/RLStruct_util.h>/* Handy utility functions for copying/initing structs*/
<rlglue/utils/C/TaskSpec_Parser.h>/* Task Spec Parser fuctions*/
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Generally, each of agent/env/experiment should only have to include one of the glue or common
files. You’ll probably never include RL common.h, but it is needed by the others.

7.1.2 RL-Glue-Extensions Project :: C/C++ Codec

The C/C++ codec gives you libraries that can be used to build stand-alone socket-based agents,
environment, and experiments. The C Codec is in the rl-glue-ext project and is expected to change
more frequently than the main RL-Glue project.

This project is written entirely in C and can be linked from C or C++ code.

The artifacts of the C Codec are:

librlagent Library give agents what they need to connect to the rl glue executable server over
sockets.

librlenvironment Library give environments what they need to connect to the rl glue executable
server over sockets.

librlexperiment Library give experiments what they need to connect to the rl glue executable
server over sockets.

7.2 Build Changes

We’re not manually writing Makefiles anymore! We’ve moved both RL-Glue and the C/C++ Codec
to a GNU autotools system. Check the appropriate technical manual for details.

7.3 API Changes

All of the API changes have been included in all of the codecs.

7.3.1 RL Freeze and Agent Freeze

The freeze function were the first in a long series of “special” functions that some people wanted RL-
Glue to support. The long term solution to special methods is the messaging system, RL agent message
and RL env message. With the messaging system you can create any protocol you want between
your experiment and agent or experiment and environment.

So, to reduce the clutter and kruft (cruft?) of the API, we’ve removed Freeze. How do you unfreeze
anyways?
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7.3.2 RL set/get random seed/state

These functions have existed to control randomization and initialization of environments for a long
time. To this point, exactly how they were to be used was never standardized, and it felt like the
right time to remove them and streamline the interface. They have been removed. We expect them
to re-surface with specific use cases in a future optional RL env message message protocol.

7.3.3 RL episode

Csaba Szepesvari made the request at some point that RL episode should let you know whether it
ended because the time step limit expired, or because the episode ended normally. We now return
the value of the terminal flag from the last env step of the episode. If the flag is set to 1, then the
episode terminated normally; if not, the timeout ended the episode.

7.3.4 RL init

It made sense to us that RL init should return the task spec, in case the experiment program wants
to know it, make a note of it, etc. The RL glue specification has now been updated to handle this.

7.4 Type Changes

The main RL-Glue C/C++ code and the codecs have each undergone different changes to the types
and their naming. Please refer to the specific technical manual for the language of interest for all
the details.

7.4.1 charArray!

Some people have found the interface of abstract types that are arrays of double and int a little
bit too restrictive. We’ve added a third array, this time of char. Now people can push strings and
char arrays of anything they want through observations and actions.

The rl abstract type t now looks like:

typedef struct
{

unsigned int numInts;
unsigned int numDoubles;
unsigned int numChars;
int* intArray;
double* doubleArray;
char* charArray;
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} rl_abstract_type_t;

Keep in mind that charArray is an array of characters. It is not necessarily null terminated. We
don’t enforce null termination. Remember, 3 chars takes up 3 array spots, but “123” takes up 4
(‘\0’ at the end).

If you do the following, bad things will probably happen if the char array is not null terminated:

printf("My char array is %s\n",observation.charArray);

8 Frequently Asked Questions

8.1 Where can I get more help?

8.1.1 Online FAQ

We suggest checking out the online RL-Glue C/C++ Codec FAQ:
http://glue.rl-community.org/Home/rl-glue#TOC-Frequently-Asked-Questions

The online FAQ may be more current than this document, which may have been distributed some
time ago.

8.1.2 Google Group / Mailing List

First, you should join the RL-Glue Google Group Mailing List:
http://groups.google.com/group/rl-glue

We’re happy to answer any questions about RL-Glue. Of course, try to search through previous
messages first in case your question has been answered before.

8.2 Can I write my agents in < insert language here >

Yes! Maybe. Writing agents/environments/experiments in different languages require there to be
a codec for that language. As of writing, there are codecs for C/C++, Java, Matlab, Python, and
Lisp. Check out the codecs project for more information:
http://glue.rl-community.org/Home/Extensions

8.3 Does RL-Glue support multi-agent reinforcement learning?

No. RL-Glue is designed for single agent reinforcement learning. At present we are not planning
a multi-agent extension of RL-Glue. We envision that this would be a separate project with a
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different audience and different objectives. However, more recently some very reasonable proposals
have been put forward, so you never know. Let us know what you think in the RL-Glue Google
group:
http://groups.google.com/group/rl-glue

8.4 Why isn’t the RL-Glue interface object oriented?

RL-Glue is meant to be a low level protocol for connecting agents, environments, and experiments.
These interactions can easily be described by the simple, flat, functions calls of RL-Glue. We don’t
feel that it is useful to overcomplicate things in that respect.

However, there is no reason that an implementation of an agent or environment shouldn’t be
designed using an object-oriented approach. In fact, many of the contributors to this project have
their own object-oriented libraries of agents that they use with RL-Glue.

Some might argue that it makes sense to create a C/C++ or Java codec that supports an OO
design directly. This would not be hard, it’s just a matter of someone interested picking up the
project and doing it. Personally, we’ve found it easy enough to write a small bridge between the
existing codecs and our personal OO hierarchies.

8.5 What does Observation mean? Why does the RL-Glue not pass around
“states”?

If the state of an environment is fully observable, then you can often use the terms state and ob-
servation interchangeably. However, observation is a more general term that is meant to mean the
perceptions that the agent receives. This can be different from the concept of state, which corre-
sponds to some truth about the environment. For example, in partially observable environments,
the observations may be aliased : the environment may be in different states, but the agent receives
the same observation.

8.6 Where is the “environmental state” stored in RL-Glue? In other systems,
such as CLSquare, the old state is passed to the environment step function.

The environment in RL-Glue is responsible for keeping track of the current “state” and computing
the next “state” given an action. The old state does not need to be passed outside of the environ-
ment, the state stays within the environment. The next state method in CLSquare is basically
the same as env step in RL-Glue.
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8.7 Can RL-Glue handle sampling the same trajectory a number of times con-
secutively?

This behavior can be achieved by clever crafting of messages between the agent, environment,
and experiment programs. We do not have a working example because nobody has ever seriously
approached us about using RL-Glue in this way. Contact us if you are interested.

8.8 Why is there no RL freeze, RL unfreeze or RL frozen?

The functionality of Freeze can easily be replicated through RL agent message and agent message.
There are literally a hundred similar methods that would be desirable to one person or another. To
avoid the RL-Glue interface becoming bloated, we are trying to avoid adding too many redundant
functions for the sake of convenience.
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