RL-Glue 3.0 Technical Manual

Brian Tanner :: brian@tannerpages.com

Contents
(1__Introduction| 3
[1.1 Software Requirements|. 4
1.2 Getting the Project|. 4
[1.3 Binary Distributions| 4
[1.3.1 Windows Binary rl_glue.exe Package| 4
[1.3.2 Intel Mac OX 10.3+ Packagel 5
1.4 Installing From Source] 5
[1.4.1 SimpleInstall] 5
[1.4.2 Install To Custom Location (maybe without root access)|. 6
143 Uninstalll 0o e 6
1.4.4 RI-Glue Installed To Default Locationl. 6
1.45 RI-Glue Installed To Custom Location| 7
2 Sample Project| 7
2.1 Agent, Environments, and Experiments| 0000000 7
2.2 Compiling and Running Skeleton| 8
2.3 Custom Flags for Custom Installs|. 9
2.4 Skeleton Agent| 10
2.5 Skeleton Fnvironment|o o Lo 10
2.6 Skeleton Experiment| 11

[2.7.1 Crashes and Bus Errors in Experiment Program|
[2.7.2 Shared Library Loading Errors|,
2.8 Going Further — Mines Sarsa Example Project]
[2.8.1 Sample-Mines-Environment| Lo
[2.8.2 Samples-Sarsa-Agent|.
[2.8.3 Sample-Experiment|
3__Advanced Features|
[3.1 Listening on Custom Ports|

[4 Who creates and frees memory?|

I

Copy-On-Keep| o o o

[4.1.1 Task Spec Example]o o

[4.1.2 Observation Example (using helper library)|00 .

[4.2.1 Messaging Examples|o o oo

5 Socket Connections and Codecs

6 RL-Glue C/C++ Specification Reference

6.1 DES| o e e e e e e e e e e e e
6.1.1 Simple Types|
[6.1.2 Structure Types|
6.1.3 Summary| e e e

6.2 Functions| e
6.2.1 Agent Functions]
6.2.2 FEnvironment Functions| o oo

13

13

13

14

14

15

16

16

17

18

6.2.3 Experiments Functions|. oo oo 20

[6.2.4 RLUtils Library Functions|. 20

[Changes and 2.x Backward Compatibility| 21
(7.1 Build Changes| e 21
7.2 Header Location Changes| 22
2.1 Agents|. . ..o L oL 22

(2.2 FEnvironments Lo 22

[7.2.3 Experiments| 22

(2.4 Miscellaneouslo o 22

7.3 Typedefs|. o 22
7.4 Composite Structures| e 23
[7.4.1 Member Naming| 23

, -Correctness and the Pointer Revolutionl. 23

[8 Frequently Asked Questions| 24
8.1 Where can I get more help?] o oo 24
[8.1.1 Online FAQ| o e 24

[8.1.2 Google Group / Mailing List| 24

8.2 How can I tell what version of RI-Glue is installed?] 24
8.3 Error: “C compiler cannot create executables” when building RL-Glue] 24

[9 Credits and Acknowledgements| 25
9.1 Contributing] e 25

1 Introduction

This document describes how to use RL-Glue when each of the agent, environment, and experiment
program is written in C/C++. This scenario is also known as the direct-compile scenario, because

all of the components can be compiled together into a single executable program. This contrasts
with the more flexible way to use RL-Glue, where the r1_glue executable server acts as a bridge
for agents, environments, and experiment programs written in any of: Python, Lisp, Matlab, Java,
or C/C++.

For general information and motivation about RL-Glue, please read the |RL-Glue overview docu-
mentation. This technical manual is about explaining the finer details of installing RL-Glue and
creating direct-compile projects, so we won’t rehash all of the high level RL-Glue ideas.

This software project is licensed under the Apache—Q.(ﬂlicense. We're not lawyers, but our intention
is that this code should be used however it is useful. We’d appreciate to hear what you’re using it
for, and to get credit if appropriate.

This project has a home here:
http://glue.rl-community.org

1.1 Software Requirements

This project requires nothing more exotic than a C compiler, Make, etc. This project uses a
configure script that was created by GNU Autotoolsﬂ so it should compile and run without problems
on most *nix platforms (Unix, Linux, Mac OS X, Windows using CYGWINED.

1.2 Getting the Project

You can get the codec a number of ways, including from source as a .tar.gz file, or as a binary
distribution.

All of the official downloads of the RL-Glue Core can be found here:
http://code.google.com/p/rl-glue-ext/wiki/RLGlueCore

You may also check the code out directly from the subversion: svn checkout http://rl-glue.googlecode.com/s
rl-glue

1.3 Binary Distributions
1.3.1 Windows Binary rl_glue.exe Package

This package is intended for Microsoft Windows users who plan to write agents, environments, and
experiments in languages other than C/C++.

"ttp://www.apache.org/licenses/LICENSE-2.0.html
“http://sources.redhat . com/autobook/
3http://www.cygwin.com/

http://rl-glue.googlecode.com/svn/trunk/docs/html/index.html
http://rl-glue.googlecode.com/svn/trunk/docs/html/index.html
http://glue.rl-community.org
http://code.google.com/p/rl-glue-ext/wiki/RLGlueCore
http://www.apache.org/licenses/LICENSE-2.0.html
http://sources.redhat.com/autobook/
http://www.cygwin.com/

This distribution is simply the rl_glue.exe executable socket server, precompiled for Windows,
and the GlueOverview and TechnicalManual PDF files. Using this distribution does not allow you
to install the C/C++ codec, because that codec requires access to certain shared libraries not
included in this binary package.

If you use this distribution, you can start r1_glue.exe a number of ways. You can just double-click
it, for example. This will probably be very tedious in the long run.

You should probably put rl_glue.exe into your $PATH, so that you can easily find it either from
the Windows COMMAND program, or from within other programs like Matlab. By default, the
Windows/Systemn folder is in the path, so if you put rl_glue.exe in that folder, you will be able to
start it easily. If you put it elsewhere you should consider updating your Windows path to include
it. There are instructions on the Internet that can help you with this, for example these.

Once rl_glue.exe is in your $PATH, you can start it from the windows COMMAND program by typing:

C:\DOCUME~1\ADMINI~1>rl_glue.exe

1.3.2 Intel Mac OX 10.3+4 Package

This package is intended for all Intel Mac 10.3+ users.

This distribution is an installer package bundled into a Mac Disk Image (.dmg). This is a graphical
installer application and should be fairly self explanatory. This distribution comes with an uninstall
script that can be used to remove this codec from your system.

1.4 Installing From Source

The package was made with autotools, which means that you shouldn’t have to do much work to
get it installed.

1.4.1 Simple Install

If you are working on your own machine, it is usually easiest to install the headers, libraries, and
rl_glue binary into /usr/local, which is the default installation location but requires sudo or
700t access.

The steps are:
>$./configure

>$ make
>$ sudo make install

http://www.computerhope.com/issues/ch000549.htm

Provided everything goes well, the headers have now been installed to /usr/local/include the
libs to /usr/local/1lib, and rl_glue to /usr/local/bin.

NOTE: On many Linux systems, /usr/local is not actually on the library and header search
paths by default, but /usr surely is. In this case, you may want to follow the instructions in
Section [I.4.2] system with --prefix=/usr.

1.4.2 Install To Custom Location (maybe without root access)

You might want to install RL-Glue to a location other than the default of /usr/local.

If you don’t have sudo or root access on the target machine, you can install RL-Glue in your home
directory (or other directory you have access to). If you install to a custom location, you will need
to set your CFLAGS and LDFLAGS variables appropriately when compiling your projects. See Section
2.3l for more information.

For example, maybe we want to install RL-Glue to /Users/joe/glue. The commands are:
>$./configure --prefix=/Users/joe/glue

>$ make
>$ make install

Provided everything goes well, the headers, libraries, binaries have been respectively installed to
/Users/joe/glue/include

/Users/joe/glue/1ib

/Users/joe/glue/bin

1.4.3 Uninstall

If you decide that you don’t want RL-Glue on your machine anymore, you can easily uninstall it.
The procedures varies a tiny bit depending on if you installed it to the default location, or to a
custom location.

1.4.4 RL-Glue Installed To Default Location

>$./configure
>$ sudo make uninstall

This will remove all of the headers, libraries, and binaries from /usr/local.

1.4.5 RL-Glue Installed To Custom Location

You'll need to make sure that either you haven’t reconfigured the directory you downloaded from,
or, if you removed/changed that already, you have to run configure again the exact same way as
when you installed it. For example:

>$./configure --prefix=/Users/joe/glue
>$ make uninstall

That’s it! This will remove all of the headers, libraries, and binaries from /Users/joe/glue.

You could also just delete the glue directory, but that may also remove related files and libraries
in addition to RL-Glue (codec support files and such that you may have installed).

2 Sample Project

We have included two example projects with this codec, located in the examples directory. The
skeleton and mines-sarsa-sample projects each contain an agent, environment, and experiment
written in C.

The skeleton contains all of the bare-bones plumbing that is required to create an agent /environment /experiment
with this codec and might be a good starting point for creating your own components.

The mines-sarsa-sample contains a fully functional tabular Sarsa learning algorithm, a discrete-
observation grid world problem, and an experiment program that can run these together and gather
results. More details below in Section 2.8

In the following sections, we will describe the skeleton project. Running and using the mines-sarsa-sample
is analogous.

2.1 Agent, Environments, and Experiments

We have provided a skeleton agent, environment, and experiment program that can be compiled
together and run as an experiment. This is a good starting point for projects that you may write
in the future. For now, the skeleton is extremely simple. Before the official RL-Glue 3.0 release,
we will add a complete sample learning agent for this and each codec.

We'll start by explaining how to compile and run the experiment, then we’ll talk in more detail
about each part.

2.2 Compiling and Running Skeleton

If RL-Glue has been installed in the default location, /usr/local, then you can compile and run
the experiment like:

>$ cd examples/skeleton/
>$ make
>$./SkeletonExperiment

We will spend a little bit talking about how to compile the project, because not everyone is com-
fortable with using a Makefile. To compile the project from the command line, you could do

>$ cc *.c -1lrlglue -lrlutils -o SkeletonExperiment
It might be useful to break this down a little bit:

cc The C compiler. You could also use gcc or g++, etc.
*.c Compile SkeletonExperiment.c SkeletonAgent.c SkeletonEnvironment.c sources files.

-Irlglue Link to the RLGlue library. This is where the glue that connects the three components
is defined.

-Irlutils Link to the RLUtils library, which comes with RL-Glue. This library contains convenience
functions for allocating and cleaning up the structure types (Section [6.2.4). If you don’t use
these convenience functions, you don’t need this library.

At this point, we’ve compiled the project, now we just have to run the experiment:
>$./SkeletonExperiment
You should see output like the following if it worked:

>$./SkeletonExperiment

Experiment starting up!

RL_init called, the environment sent task spec: VERSION RL-Glue-3.0
PROBLEMTYPE episodic DISCOUNTFACTOR 1.0 OBSERVATIONS INTS (O 20)
ACTIONS INTS (O 1) REWARDS (-1.0 1.0)

EXTRA skeleton_environment(C/C++) by Brian Tanner.

Agent responded to "what is your name?" with: my name is skeleton_agent!
Agent responded to "If at first you don’t succeed; call it version 1.0"

with: I don’t know how to respond to your message

Environment responded to "what is your name?" with: my name is skeleton_environment!
Environment responded to "If at first you don’t succeed;
call it version 1.0" with: I don’t know how to respond to your message

Episode 100 steps 0.000000 total reward O natural end
Episode 90 steps -1.000000 total reward 1 natural end
Episode 56 steps 1.000000 total reward 1 natural end

Episode 96 steps -1.000000 total reward 1 natural end
Episode 1 steps 0.000000 total reward O natural end

0
1
2
Episode 3 100 steps 0.000000 total reward O natural end
4
5
Episode 6 106 steps 1.000000 total reward 1 natural end

First observation and action were: 10 1

It ran for 204 steps, total reward was: -1.000000

That’s all there is to it! You just ran a direct-compile RL-Glue experiment! Congratulations!

2.3 Custom Flags for Custom Installs

If RL-Glue has been installed in a custom location (for example: /Users/joe/glue), then you will
need to set the header search path in CFLAGS and the library search path in LDFLAGS. You can
either do this each time you call make, or you can export the values as environment variables.

To do it on the command line:
>$ CFLAGS=-I/Users/joe/glue/include LDFLAGS=-L/Users/joe/glue/lib make

That might turn out to be quite a hassle to type those flags all the time while you are developing.
In that case, you can either update the Makefile to include these flags, or set an environment
variable. If you are using the bash shell you can export the environment variables:

>$ export CFLAGS=-I/Users/joe/glue/include
>$ export LDFLAGS=-L/Users/joe/glue/lib
>$ make

In some cases, you may be able to compile and link your programs without incident, but you receive

shared library loading errors when you try to execute them, as mentioned in Gotchas! (Section
2.7.2).

In these cases, you may also have to set LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH (OS X)
environment variables, like:

>$ export LD_LIBRARY_PATH=/Users/joe/glue/lib

In some cases (64-bit linux looks in /usr/local/1ib647) you may have to use this approach even
when RL-Glue is installed in the default location:

>$ export LD_LIBRARY_PATH=/usr/local/lib

When you open a new terminal window, all of these environment variables will be lost unless you
put the appropriate export lines in your shell startup script.

2.4 Skeleton Agent

Th Skeleton agent implements all the required functions and provides a good example of how to
create a simple agent.

The pertinent files are:
examples/skeleton/SkeletonAgent.c

This agent does not learn anything and randomly chooses integer action 0 or 1.

The Skeleton agent is very simple and well documented, so we won’t spend any more time talking
about it in these instructions. Please open it up and take a look.

2.5 Skeleton Environment

The Skeleton environment provides a good example of how to create a simple environment.

The pertinent files are:
examples/skeleton_environment/SkeletonEnvironment.c

This environment is episodic, with 21 states, labeled {0, 1,...,19,20}. States {0,20} are terminal
and return rewards of {—1,+1} respectively. The other states return reward of 0. There are two

10

actions, {0,1}. Action 0 decrements the state number, and action 1 increments it. The environment
starts in state 10.

The Skeleton environment is very simple and well documented, so we won’t spend any more time
talking about it in these instructions. Please open it up and take a look.

2.6 Skeleton Experiment

The Skeleton experiment implements all the required functions and provides a good example of
how to create a simple experiment. This section will follow the same pattern as the agent version
(Section [2.4]). This section will be less detailed because many ideas are similar or identical.

The pertinent files are:
examples/skeleton_experiment/SkeletonExperiment.c

This experiment runs RL_Episode a few times, sends some messages to the agent and environment,
and then steps through one episode using RL_step.

The Skeleton experiment is very simple and well documented, so we won’t spend any more time
talking about it in these instructions. Please open it up and take a look.

2.7 Gotchas!
2.7.1 Crashes and Bus Errors in Experiment Program

If you are running an experiment using RL_step, beware that the last step (when terminal==1),
the action will be empty. If you try to access the values of the actions in this case, you may crash
your program.

2.7.2 Shared Library Loading Errors

On some machines we’ve used, RL-Glue installs without incident, but when the experiment is run,
the system gives an error message similar to:

>$./SkeletonExperiment: error while loading shared libraries: 1librlglue-3:0:0.so0.1:
cannot open shared object file: No such file or directory

If this happens, the operating system might have an alternate search path, and might not be looking
in /usr/local/1ib for libraries. You can troubleshoot this problem by doing:

>$ LD_DEBUG=1ibs ./SkeletonExperiment

11

If you see that /usr/local/1lib is not in the search path, you may want to add it to your library
search path using LDFLAGS or LD_LIBRARY PATH. See Section for more information.

2.8 Going Further — Mines Sarsa Example Project

The skeleton sample project is extremely limited and only shows the mechanics of how RL-Glue
components are structured. The mines-sarsa sample project is much richer.

2.8.1 Sample-Mines-Environment

The mines environment, is internally a two-dimensional, discrete grid world where the agent receives
a penalty per step until reaching a goal state, hopefully without stepping on any exploding land-
mines along the way. The (x,y) state is flattened into a discrete, scalar observation for the agent.
This environment can receive special messages from the experiment program to print the current
state to the screen, and also to toggle between random starting states and a fixed starting-state
specified by the experiment.

The task specification stringE] is manually created because there is not yet a task spec builder for
C/C++.

2.8.2 Samples-Sarsa-Agent

The SARSA agent| is a tabular learning agent that uses € — greedy exploration as described in
Reinforcement Learning: An Introduction by Sutton and Barto.

The SARSA agent parses the task specification string using the C/C++ task spec parser. This agent
can receive special messages from the experiment program to pause/unpause learning, pause/unpause
exploring, save the current value function to a file, and load the the value function from a file.

2.8.3 Sample-Experiment

The sample experiment program runs the show. First, it alternates running the agent in the
environment for a number of episodes, and telling the agent to pause learning so that the current
performance can be evaluated. These results are saved to a comma-separated-value file.

The sample experiment then tells the agent to save the value function to a file, and then resets the
experiment (and agent) to initial conditions. After verifying that the agent’s initial policy is bad,
the experiment tells the agent to load the value function from the file. The agent is evaluated again
using this previously-learned value function, and performance is dramatically better.

“http://glue.rl-community.org/Home/rl-glue/task-spec-language

12

http://code.google.com/p/rl-glue/source/browse/trunk/examples/mines-sarsa-sample/SampleMinesEnvironment.c
http://code.google.com/p/rl-glue/source/browse/trunk/examples/mines-sarsa-sample/SampleSarsaAgent.c
http://www.cs.ualberta.ca/~sutton/book/ebook/node64.html
http://glue.rl-community.org/Home/rl-glue/task-spec-language

Finally, the experiment sends a message to specify that the environment should use a fixed (instead
of random) starting state, and runs the agent from that fixed start state for a while.

3 Advanced Features

3.1 Listening on Custom Ports

When connecting to RL_Glue from languages other than C/C++, the agents/environments/experiments
that are connecting will be using a codec written for a different language. These codecs connect to
the r1_glue executable server over sockets (either locally on your machine, or over the Internet).

Sometimes you will want run the rl_glue server on a port other than the default (4096) either
because of firewall issues, or because you want to run multiple instances on the same machine.

In these cases, you can tell the r1_glue executable to listen on a custom port using the environment
variable RLGLUE_PORT.

For example, try the following code:
> $ RLGLUE_PORT=1025 rl_glue
That command could give output like:

RL-Glue Version 3.0-RCla, Build 882
RL-Glue is listening for connections on port=1025

If you don’t like typing it every time, you can export it so that the value will be set for future calls
to rl_glue in the same session:

> $ export RLGLUE_PORT=1025
> $ rl_glue

Remember, on most *nix systems, you need superuser privileges to listen on ports lower than
1024, so you probably want to pick one higher than that.

4 Who creates and frees memory?

Memory management can be confusing in C/C++. It might seem especially mysterious when using
RL-Glue, because sometimes the structures are passed directly from function to function (in direct-
compile RL-Glue), but other times they are written and read through a network socket (with the
C/C++ network codec).

13

4.1 Copy-On-Keep

The rule of thumb to follow in RL-Glue is what we call copy-on-keep. Copy-on-keep means that
when you are passed a dynamically allocated structure, you should only consider it valid within the
function that it was given to you. If you need a persistent copy of the data outside of that scope,
you should make a copy: copy it if you need to keep it.

4.1.1 Task Spec Example

/*kkkskkkkkkkkkkkkkokkk UNSAFE skskskokokokokokoksksksksk ok ok ok ok o ok /
char* task_spec_copy=0;

void agent_init(const char* task_spec){
/*
Not making a copy, just keeping a pointer to the data
Compiler will even complain
*/

task_spec_copy=task_spec;

const action_t* agent_start(const observation_t* this_observation) {
/*
Behavior undefined. Who knows if the string the task_spec
was originally pointing to still exists?
*/

printf ("Task spec we saved is: %s\n",task_spec_copy);

[FRkkkkkkkkkkokokokokokokkk SAFE skskskskoskoskoskokokskoskokskokokkok sk ok /
char* task_spec_copy=0;

void agent_init(const char* task_spec){
/*
Allocating space (need length+1 for the terminator character)
*/
task_spec_copy=(char *)calloc(strlen(task_spec)+l, sizeof(char));
strcpy(task_spec_copy,task_spec);

const action_t* agent_start(const observation_t* this_observation) {
/*
This is fine, because even if
the task_spec was freed, we have a copy.

*/

14

printf ("Task spec we saved is: %s\n",task_spec_copy);

4.1.2 Observation Example (using helper library)

JRERkRkR KRRk RRRRkkkk UNSAFE okskokokkokokkokkokokkokkkok ok /
observation_t* last_observation=0;
const action_t* agent_start(const observation_t *this_observation) {
/*
Unsafe, points last_observation to this_observation’s arrays!
Compiler will even complain (that’s new)
*/

last_observation=this_observation;

/3 3k 3k sk ok sk sk ok sk ok ok sk ok ok 3k ok ok 3k ok ok SAFE sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk k ok /
observation_t* last_observation=0;
const action_t* agent_start(const observation_t *this_observation) {
/*
This helper function allocates a new struct and
copies from this_observation!
*/

last_observation=duplicateRLStructToPointer(this_observation);

Alternatively, if we already had a pointer to a observation_t.

/% 3k sk ok ok sk ok ok sk ok ok ok ok 5k Alternate 1 SAFE sk sk ok sk ok ok sk ok ok sk ok ok k /
/*Somewhere else in the codex/
observation_t* last_observation=allocateRLStructPointer(0,0,0);

const action_t* agent_start(const observation_t *this_observation) {
/*
This helper function allocates memory inside last_observation
if necessary and copies this_observation into it!

*/

replaceRLStruct (this_observation,last_observation);

Or, if you don’t like working with pointers:

15

[Fkxxxxkkkkkkkk Alternate 2 SAFE skskskkkkokokokokokk/
observation_t last_observation={0}; /* Not a pointer */
const action_t* agent_start(const observation_t *this_observation) {
/*
This helper function allocates memory inside last_observation
if necessary and copies this_observation into it!

*/

replaceRLStruct (this_observation,&last_observation);

Remember that any memory that you allocate within an agent, environment, or experiment the old
fashioned way malloc/new or using the convenience functions in <rlglue/utils/C/RLStruct_util.h>
should be released by you in the appropriate cleanup function.

4.2 Free Your Mess

When using RL-Glue, you are responsible for cleaning up any memory that you allocate. The good
news is that that you can trust that between function calls, any memory you’ve returned to a caller
has either been copied or is not necessary (it is safe to free it). Remember that in C/C++ it’s not
safe to return pointers to stack-based memory.

The Skeleton examples do the appropriate thing in this respect: the intArrays that need to be
dynamically allocated are allocated in the _init methods, and then the memory is released in the
_cleanup methods.

4.2.1 Messaging Examples

Copying, comparing, and allocating Strings in C can be tricky, so here are a couple of examples:

/Rkkkkkkkkkkkkkokokokokokk UNSAFE skskskskskoskoskoskoskokskskokokok ok ok ok ok /
const char* agent_message(const char* inMessage) {
char theBuffer[1024];
sprintf (theBuffer,"this is an example response message\n");
/*
This returns the address of a local variable
bad idea and compiler will complain
*/

return theBuffer;

[33k 3k sk ok sk sk ok sk ok ok ok ok sk K UNSAFE (MEMORY LEAK) sk 3k ok 3k ok ok sk ok ok sk ok ok sk ok ok /

16

const char* agent_message(const char* inMessage) {
char theBuffer[1024];
char* returnString=0;
sprintf (theBuffer,"this is an example response message\n");
returnString=(char *)calloc(strlen(theBuffer)+1,sizeof (char));
strcpy (returnString,theBuffer);
/*
Memory leak... every time this function is called
a new returnString is allocated, but nobody will
ever clean them up!
*/

return returnString;

JREREkRR KRR ARRRRk SAFE skokokokskokskkoksk ok ok ok Rk k /
char* agentReturnString=0; /*Global Variable */
const char* agent_message(const char* inMessage) {
char theBuffer[1024];
sprintf (theBuffer,"this is an example response message\n'");

/*
This code will free the memory on subsequent calls

*/
if (agentReturnString!=0){

free(agentReturnString) ;

agentReturnString=0;
+
agentReturnString=(char *)calloc(strlen(theBuffer)+1,sizeof (char));
strcpy (agentReturnString,theBuffer);
return agentReturnString;

5 Socket Connections and Codecs

When using socket mode: the agent, environment, and experiment programs communicate with
the r1_glue server over sockets. This can be either within a single machine, or over the Internet.

RL-Glue uses TCP/IP connections between all of the components. RL-Glue operates in lock-step,
not asynchronously. There is no time-out mechanism, RL-Glue will wait for an agent or environment
to return from a remote function call indefinitely unless the connection is terminated. This is by

design. By default, RL-Glue listens (and codecs connect to) port 4096 on localhost.

In the future, an advanced technical guide will be available that describes how to write a codec to
allow the language of your choice to connect to RL-Glue over sockets. This will be an integral part

17

of the growth and standardization of RL-Glue to a growing number of platforms and languages.
Until then, please contact us directly on the RL-Glue mailing list for further information:
http://groups.google.com/group/rl-glue

It’s not impossible! At least one enterprising individual, Gabor Balazs, has written a codec (LISP)
without any direct help from the core RL-Glue team.

6 RL-Glue C/C++ Specification Reference

This section will explain how the RL-Glue types and functions are defined for C/C++. This is
important both for direct-compile experiments, and for components that use the C/C++ network
codec.

6.1 Types

The types used here will be the same for the C/C++ network codec.

6.1.1 Simple Types

The simple types are:

Reward : double
Terminal Flag : int

Message : charx*
Task_Spec : charx*

6.1.2 Structure Types

All of the major structure types (observations, actions) are typedef’d to rl_abstract_type_t.

typedef struct

{
unsigned int numlInts;
unsigned int numDoubles;
unsigned int numChars;
int* intArray;
double* doubleArray;
char* charArray;

} rl_abstract_type_t;

18

http://groups.google.com/group/rl-glue

The specific names and definitions of the structure types are:

typedef rl_abstract_type_t observation_t;
typedef rl_abstract_type_t action_t;

The composite structure types are:

typedef struct{
const observation_t *observation;
const action_t *aaction;

} observation_action_t;

typedef struct{
double reward;
const observation_t *observation;
int terminal;

} reward_observation_terminal_t;

typedef struct {
double reward;
const observation_t *observation;
const action_t *action;

int terminal;
} reward_observation_action_terminal_t;

6.1.3 Summary
The type names are:

observation_t

action_t

observation_action_t
reward_observation_terminal_t
reward_observation_action_terminal_t

6.2 Functions
6.2.1 Agent Functions
All agents should implement these functions, located in rlglue/Agent_common.h

void agent_init(const char* task_spec);

19

const action_t* agent_start(const observation_t* observation);

const action_t* agent_step(double reward, const observation_t* observation);
void agent_end(double reward);

void agent_cleanup();

const char* agent_message(const char* message);

6.2.2 Environment Functions
All environments should implement these functions, located in rlglue/Environment_common.h

const char* env_init();

const observation_t* env_start();

const reward_observation_terminal_t* env_step(const action_t* action);
void env_cleanup();

const char* env_message(const char * message);

6.2.3 Experiments Functions
All experiments can call these functions, located in rlglue/RL_glue.h

const char* RL_init();

const observation_action_t *RL_start();

const reward_observation_action_terminal_t *RL_step();
void RL_cleanup();

const char* RL_agent_message(const char* message);
const char* RL_env_message(const char* message);

double RL_return();

int RL_num_steps();

int RL_num_episodes();

int RL_episode(unsigned int num_steps);

6.2.4 RLUtils Library Functions

You can get access to these functions by linking to libRLUtils (-1rlutils) and by including the
appropriate header:

#include <rlglue/utils/C/RLStruct_util.h>

Prototypes with documentation can be found |herel

20

http://code.google.com/p/rl-glue/source/browse/trunk/src/rlglue/utils/C/RLStruct_util.h

void replaceRLStruct(const rl_abstract_type_t *src, rl_abstract_type_t *dst);
void clearRLStruct(rl_abstract_type_t *dst);
void freeRLStructPointer(rl_abstract_type_t *dst);

void reallocateRLStruct(rl_abstract_type_t *dst,
const unsigned int numlInts,
const unsigned int numDoubles,
const unsigned int numChars);

void allocateRLStruct(rl_abstract_type_t *dst,
const unsigned int numlnts,
const unsigned int numDoubles,
const unsigned int numChars);

rl_abstract_type_t *allocateRLStructPointer(const unsigned int numInts,
const unsigned int numDoubles,

const unsigned int numChars);

rl_abstract_type_t *duplicateRLStructToPointer(const rl_abstract_type_t *src);

7 Changes and 2.x Backward Compatibility

There were many changes from RL-Glue 2.x to RL-Glue 3.x. Most of them are at the level of the
API and project organization, and are addressed in the RL-Glue overview documentation, not this
technical manual.

7.1 Build Changes

We’re not manually writing Makefiles anymore! We’ve moved both RL-Glue and the C/C++ Codec
to a GNU autotools system. You can build these projects using the following standard Linux/Unix
procedure now:

>$./configure
>$ make
>$ sudo make install

21

http://rl-glue.googlecode.com/svn/trunk/docs/html/index.html
http://www.gnu.org/software/autoconf/

7.2 Header Location Changes
7.2.1 Agents

01d: #include <RL_common.h>
New: #include <rlglue/Agent_common.h>

7.2.2 Environments

0ld: #include <RL_common.h>
New: #include <rlglue/Environment_common.h>

7.2.3 Experiments

01d: #include <RL_glue.h>
New: #include <rlglue/RL_glue.h>

7.2.4 Miscellaneous

01d: #include <RL_network.h>
New: #include <rlglue/network/RL_network.h>

7.3 Typedefs

This is a big one. We revamped all of the type names for C/C++. We made them all lower case,
and added “_t” to them to identify them as types. This should reduce confusion so there is no more
code like:

Observation observation;

Instead it’ll be:
observation_t observation;

We think the latter is easier to read. We've also stopped using typdef for reward, task_spec. A
first beta of RL-Glue 3.0 and the C/C++ codec had new types message_t and terminal_t: these
have been removed also. Feedback from the community was that people preferred to see the actual
types instead of these surrogates.

The first beta of RL-Glue 3.0 also had a file called legacy_types.h that would allow you to use
the old type names. This has been removed as of Release Candidate 4 (RC4) because of the major
overhaul from structures to pointers (see Section[7.5)). Sorry.

22

7.4 Composite Structures
7.4.1 Member Naming

In RL-Glue 2.x, composite structures took the form:

typedef struct Reward_observation_t{
Reward r;
Observation o;
int terminal;

} Reward_observation;

Unfortunately, it is very inconsistent that the reward and observation are r and o respectively,
while the terminal flag is terminal. With the second pass of RL-Glue 3.0 we are moving to a more
verbose naming scheme: we will fully name each member of these composite structs as reward,
action, observation, or terminal.

7.5 Const-Correctness and the Pointer Revolution

This is another big one. This was not originally planned for RL-Glue 3.0, and it breaks backward
compatibility with RL-Glue 2.x in a serious way. However, the payoff we hope to get by making
the code easier to understand and debug should be worth the effort in the long run.

Many of the old function prototypes in RL-Glue passed structures by value. A typical example:
Action agent_step(Reward r, Observation o) ;

In this example, Action and Observation are structs, and Reward typdef’d to double. In the
first revision of RL-Glue 3.0 we updated to:
action_t agent_step(reward t r, observation t o);

Notice in this version that it might not be intuitive whether r, the reward, is a structure or a
primitive type. Safety is also not obvious: can the agent expect that the returned action will be
changed by RL-Glue? Should the agent free the dynamic arrays in o when finished with it?

With the second pass of updates, we’ve taken the next leap to:
const action_t* agent_step(double reward, const observation t* observation);

We feel it is more clear with this prototype that the agent should not try to change the observation,
and that RL-Glue will not change the action. You can easily defeat these safety checks by casting
away the const, but at least the compiler will yell at you if you accidentally try to break the rules.

We have made these sorts of changes to all functions that accept or return any derivative of
rl_abstract_type_t.

23

8 Frequently Asked Questions

8.1 Where can I get more help?
8.1.1 Online FAQ

We suggest checking out the online RL-Glue C/C++ Codec FAQ:
http://glue.rl-community.org/Home/rl1-glue#TOC-Frequently-Asked-Questions

The online FAQ may be more current than this document, which may have been distributed some
time ago.

8.1.2 Google Group / Mailing List

First, you should join the RL-Glue Google Group Mailing List:
http://groups.google.com/group/rl-glue

We’re happy to answer any questions about RL-Glue. Of course, try to search through previous
messages first in case your question has been answered before.

8.2 How can I tell what version of RL-Glue is installed?

You can find out the release number, and the specific build number by calling RL-Glue with invalid
(any) parameters. For example:

> $ rl_glue --help
RL-Glue Version 3.0-RCla, Build 882

rl_glue version = 3.0-RCla
build number = 882

Usage: $:>rl_glue

By default rl_glue listens on port 4096.
To choose a different port, set environment variable RLGLUE_PORT.

This tells you that the name of the release you have installed is 3.0-RC1a, and the specific build
from subversion is r882.

8.3 Error: “C compiler cannot create executables” when building RL-Glue

We have seen this on a fresh Linux Ubuntu machine. Try installing g++:

24

http://glue.rl-community.org/Home/rl-glue#TOC-Frequently-Asked-Questions
http://groups.google.com/group/rl-glue

> $ sudo apt-get install g++

9 Credits and Acknowledgements

Andrew Butcher originally wrote the RL-Glue library and network library. Thanks Andrew.
Brian Tanner has since grabbed the torch and has continued to develop RL-Glue and the codecs.

Special thanks to Scott Livingston for creating the new C/C++ task spec parser.

9.1 Contributing

If you would like to become a member of this project and contribute updates/changes to the code,
please send a message to rl-glue@googlegroups.com.

Document Information

Revision Number: $Rev: 980 $

Last Updated By: $Author: brian@tannerpages.com $

Last Updated : $Date: 2009-02-09 16:51:57 -0700 (Mon, 09 Feb 2009) $
$URL: https://rl-glue.googlecode.com/svn/trunk/docs/TechnicalManual.tex $

25

	Introduction
	Software Requirements
	Getting the Project
	Binary Distributions
	Windows Binary rl_glue.exe Package
	Intel Mac OX 10.3+ Package

	Installing From Source
	Simple Install
	Install To Custom Location (maybe without root access)
	Uninstall
	RL-Glue Installed To Default Location
	RL-Glue Installed To Custom Location

	Sample Project
	Agent, Environments, and Experiments
	Compiling and Running Skeleton
	Custom Flags for Custom Installs
	Skeleton Agent
	Skeleton Environment
	Skeleton Experiment
	Gotchas!
	Crashes and Bus Errors in Experiment Program
	Shared Library Loading Errors

	Going Further -- Mines Sarsa Example Project
	Sample-Mines-Environment
	Samples-Sarsa-Agent
	Sample-Experiment

	Advanced Features
	Listening on Custom Ports

	Who creates and frees memory?
	Copy-On-Keep
	Task Spec Example
	Observation Example (using helper library)

	Free Your Mess
	Messaging Examples

	Socket Connections and Codecs
	RL-Glue C/C++ Specification Reference
	Types
	Simple Types
	Structure Types
	Summary

	Functions
	Agent Functions
	Environment Functions
	Experiments Functions
	RLUtils Library Functions

	Changes and 2.x Backward Compatibility
	Build Changes
	Header Location Changes
	Agents
	Environments
	Experiments
	Miscellaneous

	Typedefs
	Composite Structures
	Member Naming

	Const-Correctness and the Pointer Revolution

	Frequently Asked Questions
	Where can I get more help?
	Online FAQ
	Google Group / Mailing List

	How can I tell what version of RL-Glue is installed?
	Error: ``C compiler cannot create executables'' when building RL-Glue

	Credits and Acknowledgements
	Contributing

