Project 0

• Part 3: may be easier with monks (2 classes)
• 80/20 for monks: combine train and test only do 30 for random (can also do for info gain)
• Can do standard deviation, standard error, or confidence intervals
Consistent Learners

- A learner L using a hypothesis H and training data D is said to be a consistent learner if it always outputs a hypothesis with zero error on D whenever H contains such a hypothesis.
- By definition, a consistent learner must produce a hypothesis in the version space for H given D.
- Therefore, to bound the number of examples needed by a consistent learner, we just need to bound the number of examples needed to ensure that the version-space contains no hypotheses with unacceptably high error.
ε-Exhausted Version Space

- The version space, $\text{VS}_{H,D}$, is said to be **ε-exhausted** iff every hypothesis in it has true error less than or equal to ε.

- One can never be sure that the version-space is ε-exhausted, but one can bound the probability that it is not.

- **Theorem** (Haussler, 1988): If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples for some target concept c, then for any $0 \leq \varepsilon \leq 1$, the probability that the version space $\text{VS}_{H,D}$ is **not** ε-exhausted is less than or equal to:

 $$|H|e^{-\varepsilon m}$$
Proof

• Let $H_{bad} = \{h_1, ..., h_k\}$ be the subset of H with error $> \varepsilon$. The VS is not ε-exhausted if any of these are consistent with all m examples.

• A single $h_i \in H_{bad}$ is consistent with one example with probability:

$$P(\text{consist}(h_i, e_j)) \leq (1 - \varepsilon)$$

• A single $h_i \in H_{bad}$ is consistent with all m independent random examples with probability: ?
Proof

• Let $H_{\text{bad}}=\{h_1,\ldots,h_k\}$ be the subset of H with error $>\varepsilon$. The VS is not ε-exhausted if any of these are consistent with all m examples.

• A single $h_i \in H_{\text{bad}}$ is consistent with one example with at most probability:

$$P(\text{consist}(h_i,e_j)) \leq (1-\varepsilon)$$

• A single $h_i \in H_{\text{bad}}$ is consistent with all m independent random examples with probability:

$$P(\text{consist}(h_i,D)) \leq (1-\varepsilon)^m$$

• The probability that any $h_i \in H_{\text{bad}}$ is consistent with all m examples is:

$$P(\text{consist}(H_{\text{bad}},D)) = P(\text{consist}(h_1,D) \lor \cdots \lor \text{consist}(h_k,D))$$
Proof (cont.)

- What’s an upper bound on the probability of a disjunction?
Proof (cont.)

- Since the probability of a disjunction of events is \textit{at most} the sum of the probabilities of the individual events:
 \[P(\text{consist}(H_{bad}, D)) \leq |H_{bad}|(1 - \varepsilon)^m \]

- Since: \(|H_{bad}| \leq |H|\) and \((1 - \varepsilon)^m \leq e^{-\varepsilon m}, 0 \leq \varepsilon \leq 1, m \geq 0\)
 \[P(\text{consist}(H_{bad}, D)) \leq |H|e^{-\varepsilon m} \]

Q.E.D
Sample Complexity Result

• Therefore, any consistent learner, given at least:
 \[
 \left(\ln \frac{1}{\delta} + \ln |H| \right) / \varepsilon
 \]
 examples will produce a result that is PAC.

• Just need to determine the size of a hypothesis space to instantiate this result for learning specific classes of concepts.

• This gives a *sufficient* number of examples for PAC learning, but *not* a *necessary* number. Several approximations like that used to bound the probability of a disjunction make this a gross over-estimate in practice.
Let’s Work Through an Example

And when you gaze long into an abyss the abyss also gazes into you. ~ Friedrich Nietzsche
• Consider the class of concepts, C, consisting of axis-parallel hyper-rectangles in n-dimensional space.
 – Instances are described by n real-valued features and that an instance is classified as positive iff the value for each feature, x_i, falls in the range $(l_i \leq x_i \leq u_i)$ where l_i and u_i are separate lower and upper bounds specified for each feature.

• Consider a discretized concept space where all bounds l_i and u_i must be integers in the interval $(0, m)$, inclusive.
 – Zero-width hyper-rectangles along one or more dimensions are allowed since it is possible that $l_i = u_i$ for any feature.

• Using the size of this finite hypothesis space, give an upper bound on the number of randomly drawn training instances sufficient to assure that for any concept in C, any consistent learner using $H=C$, will, with probability at least $1-\delta$, output a hypothesis with error at most ε.

• Calculate a specific number of sufficient examples when $n=3$ (axis-parallel boxes in 3-D), $m=10$, and $\delta=\epsilon=0.01$.
Since \(l_i \leq u_i \) for each feature \(x_i \), there are the following ranges on \(x_i \):

- For \(l_i = s \) there are \(m + 1 - s \) values for \(u_i \): \(s, s + 1, s + 2, \ldots m \)
- Therefore the total number of ranges on \(x_i \) is

\[
\sum_{s=0}^{m} (m + 1 - s) = \frac{(m + 1)(m + 2)}{2}
\]

Since the range along each dimension can be selected independently, there are

\[
|H| = \left(\frac{(m + 1)(m + 2)}{2} \right)^n
\]

total possible hyper-rectangles.

Therefore

\[
m' \geq \frac{1}{\epsilon} \left(\ln \frac{1}{\delta} + \ln \left(\frac{(m + 1)(m + 2)}{2} \right)^n \right)
\]

\[
m' \geq \frac{1}{\epsilon} \left(\ln \frac{1}{\delta} + n \ln \left(\frac{(m + 1)(m + 2)}{2} \right) \right)
\]

examples are sufficient.

For \(n = 3, m = 10, \delta = \epsilon = 0.01 \)

\[
m' \geq 1718
\]
Other Concept Classes

- **k-term DNF**: Disjunctions of at most k unbounded conjunctive terms: $T_1 \lor T_2 \lor \cdots \lor T_k$
 - $\ln(|H|) = O(kn)$
- **k-DNF**: Disjunctions of any number of terms each limited to at most k literals: $((L_1 \land L_2 \land \cdots \land L_k) \lor (M_1 \land M_2 \land \cdots \land M_k) \lor \cdots$
 - $\ln(|H|) = O(n^k)$
- **k-clause CNF**: Conjunctions of at most k unbounded disjunctive clauses: $C_1 \land C_2 \land \cdots \land C_k$
 - $\ln(|H|) = O(kn)$
- **k-CNF**: Conjunctions of any number of clauses each limited to at most k literals: $((L_1 \lor L_2 \lor \cdots \lor L_k) \land (M_1 \lor M_2 \lor \cdots \lor M_k) \land \cdots$
 - $\ln(|H|) = O(n^k)$

Therefore, all of these classes have polynomial sample complexity given a fixed value of k.
Infinite Hypothesis Spaces

• The preceding analysis was restricted to finite hypothesis spaces.

• Some infinite hypothesis spaces (such as those including real-valued thresholds or parameters) are more expressive than others.
 – Compare a rule allowing one threshold on a continuous feature (length<3cm) vs one allowing two thresholds (1cm<length<3cm).

• Need some measure of the expressiveness of infinite hypothesis spaces.

• The Vapnik-Chervonenkis (VC) dimension provides just such a measure, denoted VC(H).

• Analogous to $\ln |H|$, there are bounds for sample complexity using VC(H).
Shattering Instances

• A hypothesis space is said to shatter a set of instances iff for every partition of the instances into positive and negative, there is a hypothesis that produces that partition.

• For example, consider 2 instances described using a single real-valued feature being shattered by a single interval.
Shattering Instances (cont)

• But 3 instances cannot be shattered by a single interval.

\[
\begin{array}{ccc|ccc|c}
\text{x} & \text{y} & \text{z} & + & - & \\
\hline
\text{x},\text{y},\text{z} & \text{x} & \text{y},\text{z} & \text{x} & \text{y},\text{z} & \\
\text{x} & \text{y},\text{z} & \text{x} & \text{y},\text{z} & \text{x} & \\
\text{y} & \text{x},\text{z} & \text{y} & \text{x},\text{z} & \text{y} & \\
\text{x},\text{y} & \text{z} & \text{x},\text{y} & \text{z} & \text{x},\text{y} & \\
\text{x},\text{y},\text{z} & \text{x},\text{z} & \text{z} & \text{x},\text{z} & \text{z} & \\
\text{y},\text{z} & \text{x} & \text{y},\text{z} & \text{x} & \text{y},\text{z} & \\
\text{z} & \text{x},\text{y} & \text{z} & \text{x},\text{y} & \text{z} & \\
\text{x},\text{z} & \text{y} & \text{x},\text{z} & \text{y} & \text{x},\text{z} & \\
\end{array}
\]

Cannot do

• Since there are \(2^m\) partitions of \(m\) instances, in order for \(H\) to shatter instances: \(|H| \geq 2^m\).
VC Dimension

- An unbiased hypothesis space shatters the entire instance space.
- The larger the subset of \(X \) that can be shattered, the more expressive the hypothesis space is, i.e. the less biased.
- The Vapnik-Chervonenkis (VC) dimension, \(VC(H) \) of hypothesis space \(H \) defined over instance space \(X \) is the size of the largest finite subset of \(X \) shattered by \(H \). If arbitrarily large finite subsets of \(X \) can be shattered then \(VC(H) = \infty \).
- If there exists at least one subset of \(X \) of size \(d \) that can be shattered then \(VC(H) \geq d \). If no subset of size \(d \) can be shattered, then \(VC(H) < d \).
- For a single interval on the real line, all sets of 2 instances can be shattered, but no set of 3 instances can be, so \(VC(H) = 2 \).
- Since \(|H| \geq 2^m \), for \(m \) instances, \(VC(H) \leq \log_2 |H| \).
VC Dimension Example

• Consider axis-parallel rectangles in the real-plane, i.e. conjunctions of intervals on two real-valued features. Some 4 instances can be shattered.

Some 4 instances cannot be shattered:
VC Dimension Example (cont)

• No five instances can be shattered since there can be at most 4 distinct extreme points (min and max on each of the 2 dimensions) and these 4 cannot be included without including any possible 5th point.

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{vc_example.png}
\end{figure}

• Therefore $VC(H) = 4$
• Generalizes to axis-parallel hyper-rectangles (conjunctions of intervals in n dimensions): $VC(H) = 2n$.
Upper Bound on Sample Complexity with VC

- Using VC dimension as a measure of expressiveness, the following number of examples have been shown to be sufficient for PAC Learning (Blumer et al., 1989).

\[
\frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8VC(H) \log_2 \left(\frac{13}{\varepsilon} \right) \right)
\]

- Compared to the previous result using \(\ln |H| \), this bound has some extra constants and an extra \(\log_2(1/\varepsilon) \) factor. Since \(VC(H) \leq \log_2 |H| \), this can provide a tighter upper bound on the number of examples needed for PAC learning.
Conjunctive Learning with Continuous Features

• Consider learning axis-parallel hyper-rectangles, conjunctions on intervals on \(n \) continuous features.
 – \(1.2 \leq \text{length} \leq 10.5 \land 2.4 \leq \text{weight} \leq 5.7 \)

• Since \(\text{VC}(H)=2n \) sample complexity is
 \[
 \frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 16n \log_2 \left(\frac{13}{\varepsilon} \right) \right)
 \]

• Since the most-specific conjunctive algorithm can easily find the tightest interval along each dimension that covers all of the positive instances \((f_{\text{min}} \leq f \leq f_{\text{max}})\) and runs in linear time, \(O(|D|n)\), axis-parallel hyper-rectangles are PAC learnable.
Sample Complexity Lower Bound with VC

• There is also a general lower bound on the minimum number of examples necessary for PAC learning (Ehrenfeucht, *et al.*, 1989):

Consider any concept class \(C \) such that \(VC(H) \geq 2 \) any learner \(L \) and any \(0 < \varepsilon < 1/8, 0 < \delta < 1/100 \). Then there exists a distribution \(D \) and target concept in \(C \) such that if \(L \) observes fewer than:

\[
\max \left(\frac{1}{\varepsilon} \log_2 \left(\frac{1}{\delta} \right), \frac{VC(C) - 1}{32\varepsilon} \right)
\]

examples, then with probability at least \(\delta \), \(L \) outputs a hypothesis having error greater than \(\varepsilon \).

• Ignoring constant factors, this lower bound is the same as the upper bound except for the extra \(\log_2(1/\varepsilon) \) factor in the upper bound.
Analyzing a Preference Bias

• Unclear how to apply previous results to an algorithm with a preference bias such as simplest decisions tree or simplest DNF.

• If the size of the correct concept is n, and the algorithm is guaranteed to return the minimum sized hypothesis consistent with the training data, then the algorithm will always return a hypothesis of size at most n, and the effective hypothesis space is all hypotheses of size at most n.

• Calculate $|H|$ or $VC(H)$ of hypotheses of size at most n to determine sample complexity.
Computational Complexity and Preference Bias

• However, finding a minimum size hypothesis for most languages is computationally intractable.

• If one has an approximation algorithm that can bound the size of the constructed hypothesis to some polynomial function, $f(n)$, of the minimum size n, then can use this to define the effective hypothesis space.

• However, no worst case approximation bounds are known for practical learning algorithms (e.g. ID3).
“Occam’s Razor” Result
(Blumer et al., 1987)

• Assume that a concept can be represented using at most n bits in some representation language.

• Given a training set, assume the learner returns the consistent hypothesis representable with the least number of bits in this language.

• Therefore the effective hypothesis space is all concepts representable with at most n bits.

• Since n bits can code for at most 2^n hypotheses, $|H|=2^n$, so sample complexity if bounded by:

$$\left(\ln \frac{1}{\delta} + \ln 2^n\right)/\varepsilon = \left(\ln \frac{1}{\delta} + n \ln 2\right)/\varepsilon$$

• This result can be extended to approximation algorithms that can bound the size of the constructed hypothesis to at most n^k for some fixed constant k (just replace n with n^k)
Interpretation of “Occam’s Razor” Result

• Since the encoding is unconstrained it fails to provide any meaningful definition of “simplicity.”
• Hypothesis space could be any sufficiently small space, such as “the 2^n most complex boolean functions, where the complexity of a function is the size of its smallest DNF representation”
• Assumes that the correct concept (or a close approximation) is actually in the hypothesis space, so assumes *a priori* that the concept is simple.
• Does not provide a theoretical justification of Occam’s Razor as it is normally interpreted.
Mistake Bound

- How many mistakes before PAC?
- How many mistakes before exactly learning c?
- Optimal mistake bound (over all learning algos)?

- Similar to idea of regret
COLT Conclusions

• The PAC framework provides a theoretical framework for analyzing the effectiveness of learning algorithms.
• The sample complexity for any consistent learner using some hypothesis space, H, can be determined from a measure of its expressiveness $|H|$ or $\text{VC}(H)$, quantifying bias and relating it to generalization.
• If sample complexity is tractable, then the computational complexity of finding a consistent hypothesis in H governs its PAC learnability.
• Constant factors are more important in sample complexity than in computational complexity, since our ability to gather data is generally not growing exponentially.
• Experimental results suggest that theoretical sample complexity bounds over-estimate the number of training instances needed in practice since they are worst-case upper bounds.
COLT Conclusions (cont)

• Additional results produced for analyzing:
 – Learning with queries
 – Learning with noisy data
 – Average case sample complexity given assumptions about the data distribution.
 – Learning finite automata
 – Learning neural networks

• Analyzing practical algorithms that use a preference bias is difficult.

• Some effective practical algorithms motivated by theoretical results:
 – Boosting
 – Support Vector Machines (SVM)
Example result